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Abstract— This paper models signals and noise for extracel-
lular neural recording. Although recorded data approximately
follow Gaussian distribution, there are slight deviations that are
critical for signal detection: a statistical examination of neural
data in Hilbert space shows that noise forms an exponential
term while signals form a polynomial term. These two terms
can be used to estimate a spiking probability map that indicates
spike presence. Both synthesized data and animal data are
used for the detection performance evaluation and comparison
against other popular detectors. Experimental results suggest
that the predicted spiking probability map is consistent with
the benchmark and work robustly with different recording
preparations.

I. INTRODUCTION

Neurons in the brain form closely connected networks,
where a most important information carrier is the action
potential produced by individual neurons [1]-[3]. To capture
action potentials and study information generation, repre-
sentation, and propagation, they need to be extracted from
the recorded data, referred to as spike detection. For in
vivo neural recording experiments, reliable spike detection
can be difficult. First, neurons are nonlinear, non-stationary
devices which induce irregular, varied spike patterns [4],
[5] coupled with interferences, artifacts, and noise. Second,
it lacks labelled benchmark data for algorithm training.
As a result, detection algorithms tend to be less specific
and not adaptive to different recording conditions and data
dynamics. Third, it is preferable to have detection algorithms
that require less computational resources, thus feasible for
hardware implementation. A low power, small area ASIC
allows data compressed at the implant side and wirelessly
transmitted to the external device.

In this paper, we report a novel EC-PC spike detection
method for in vivo neural recording. It shows that neural
data are a combination of two components by noise and
detectable spikes. After Hilbert transform, the noise forms an
exponential component (EC) and spikes form a polynomial
component (EC). By using online trained EC and PC from
raw data, the detector can output a spiking probability map
that indicates the presence of spikes in a statistic manner.
Compared with other approaches that assume tuned spike
templates and stationary noise, or require careful adjustment
of parameters, the proposed algorithm is nonparametric, self-
adaptive, working reliably under different recording condi-
tions. The EC-PC detection algorithm will be given first
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followed by experiments on both synthesized and animal
data. Concluding remarks will be given the last.

II. EC-PC SPIKE DETECTION ALGORITHM
A. Noise vs. Spikes - EC/PC decomposition

Extracellularly recorded neural data consist of neural
spikes (300Hz-5KHz), field potentials (<250Hz [6]) and
noise (including other unresolved activities). After highpass
filtering the data at 300Hz, recorded data are 1.) activities of
neurons within the recording radius, where spike power is
much stronger than the noise power, 2.) activities of neurons
in an extended radius (up to a few hundred pm), where
spike power is comparable to the noise power, and 3.) noise
produced by different sources including unresolved synaptic
activities, firing of distant neurons, and recording hardware.

To study both signals and noise in highpass filtered neural
data, we refer to Central Limit Theorem (CLT) [7]: let
X;, 1 =1,2,3,...K be a sequence of independent random
variables. Suppose that each X; has a finite expected value
E[X;] = p; and a finite variance E[(X; — u1;)?] = o2. If for
some & > 0, the expected values E[|X;|?>T2°] are finite and
the lyapunov’s condition

: 1 . 2426
Ig@mm;ﬂwi—m\ =0 (1)
is satisfied, then the convergence to Gaussian holds:
ZiKzl X follows a Gaussian distribution with mean Zfil 1L
and variance 31 | o2,

Treating voltage fluctuation induced by individual neu-
ronal source as a random variable (spike, synapse), the
recorded data are the sum of many random variables with
additional Gaussian noise by electrode interface and electron-
ics. Due to the violations of Lyapunov’s conditions, recorded
neural data can be modeled as a mixture of Gaussian
distribution by noise [8] and small amplitude activities from
distant neurons (> 100um) [9] and a second distribution by
detectable spikes [10].

To simplify the computation and cater to ASIC implemen-
tation, Hilbert transform is used. Neural data sequence V()
and its Hilbert transform HV'(¢) are related to each other
that they together form a strong analytic signal Vi (¢) [11]

Vie(t) = V(£) +iHV (£) = V(t)—H%P/OO gdﬂ @)

where P in front of the integral denotes the Cauchy principal
value and H denotes Hilbert transform. Define

Z(t) = Va(t)® @)
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(a) EC/PC decomposition. X-axis is the analytical signal power normalized to data variance; Y-axis is pdf. The figure shows the estimated

EC (dashed blue), PC (solid grey) and superimposed EC+PC (solid black) in comparison with neural data distribution (f(Z), dotted grey). (b) spiking
probability map of a Ss in vivo data. Upper, bandpass filtered neural data. Bottom, corresponding spiking probability map with probabilities greater than
0.5 are plotted. X-axis is time and Y-axis the spiking probability. (c) Zoom-in figure at around 4.46s.

the instantaneous power of the analytic signal V(¢). For
low SNR recordings e.g., no visually detectable spikes, the
probability density function (pdf) f(Z) is contributed by
just noise and background activities which are Gaussian
distributed. Therefore, f(Z) follows x? distribution with 2
degrees of freedom

1 z

fn(Z) ~ ﬁeiﬁ,z >0, 4

where f,,(Z) denotes noise probability density function and
o is the data standard deviation. From (4), f,(Z) has an
exponential form, a straight line in the linear-log-scale.

For moderate and high SNR recordings, f(Z) noticeable
deviates from a straight line as shown in Fig. 1(a). To
quantitatively investigate the second distribution, denote M
the magnitude of a spike, by Coulomb’s law, M is inversely
proportional to the distance between the source (neuron) and
the measuring point (electrode). Based on this property, the
density function of the number of neurons with respect to
M can be derived
dr(M)

i &)
where C' is a constant that relates to neuron density (the
number of neurons per mm?), (M) is the distance from a
targeted neuron to the recording site.

To reach an analytical description, we assume individual
analytic spikes introduce W equally spaced samples on
average, based on (5), the added pdf by spikes to f(Z) (the
second distribution) is a polynomial component, as

+o0 s
[/ oY ary & !

—dM] — —.
M ] az Z2%5
B. Spiking Probability of Neural Data Points

Equations (4) and (6) together suggest that f(Z) is a com-
bination of an exponential component (EC, e~*1%, generated
by noise) and a polynomial component (PC, Z~*2, generated

p(M) = Cr(M)?| | oc M7,

1

~
~

fa(Z) (6)

|s=Z0'5 X

'Equation. 5 and 6 have implicitly assumed that neural spike power is
large than the noise power. As a result, when fg(Z) needs to be truncated
when Z < o2.

I o 4
> o ©

Spiking probability p(Z)

et
N

o

10 20 30
Analytical signal instantaneous power Z

(a)

40

Fig. 2. A typical plot of analytical signal power Z vs. spiking probability
p(Z) curve, according to (7).

by spikes), as illustrated in Fig. 1(a). Assume };(Z) and
fa(Z) the exponential component and the polynomial com-
ponent trained in real-time. Then the “spiking probability”,
the probability that a data point with instantaneous power Z
is from a spike, can be quantitatively assessed by

fa(2) T
7) = — )~ a
A= e i a7

where {a,b} are the normalization coefficients that make
f(Z) sum to one and c is added to regulate PC at small
Z thus prevents f(Z) from going infinite. Specially, the data
point Z satisfying p(Z) = 0.5 is defined as EC/PC crossing
point, at which point spike power is equal to noise power and
EC and PC curves in Fig. 1 cross each other. The square root
of crossing point is denoted by Z%?, s pc- A typical plot of (7)
as a function of Z is shown in Fig. 2.

In window detection, for an arbitrary time window
[m; AT, m; 1 AT] of a few ms, we adopt a winner-take-all
strategy. The probability that at lease one spike appears in the
ith window is approximated by the peak spiking probability
of the data points in the window:

P(i) =

p(Z;), Z; = MAX{Z(mAT)},m; <m < my1.
®)
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Fig. 3. ROC curves of four detection methods: EC-PC, black triangles; AT
(absolute thresholding), blue stars; NEO, pink asterisks; CWD (continuous
wavelet detector), red circles. The X-axis is probability of false alarm and Y-
axis is probability of detection. Each curve is averaged from 100 trials. The
evaluation is finished under low (15Hz), median (30Hz) and high (90Hz)
firing rates (FR) and different noise levels. Each line shows the results with
fixed firing rate and Each column represents the results with fixed noise
levels.

A plotting of P(#) over time is a predictive map of spikes and
defined as “spiking probability map”, which is illustrated in
Fig. 1(b) and (c). The probability applied on spiking prob-
ability map, ranging from 0 to 1, is defined as “probability
threshold” in our proposed work.

III. EXPERIMENTS ON SYNTHESIZED DATA

In this section, algorithm testing results on synthesized
data are presented.

A. Data Preparation

Recorded in vivo data that contain a small number of
visually detectable spikes are used as the background noise
(20 - 304V RMS) and extracted spike waveforms with large
amplitude (> 300uV’) are used as spike templates. Up to
30 neurons are added within a few hundred pm radius of a
point electrode, assuming a homogeneous neuron spatial dis-
tribution. The amplitude of each template is scaled inversely
proportional to the distance between the electrode and space
location of corresponding neuron. Individual neurons’ firings
are assumed to follow Poisson process with varied on/off
firing states. The SNR in our experiments is defined as the
averaged peak amplitude of spike templates over background
noise RMS
w Lict Vi

SNR = s,

©))

where V; is peak amplitude of each spike template and
RMS,, is noise RMS value.

B. Performance Comparison Against Other Techniques

In this section, the performance of EC-PC detector is
evaluated and compared against three popular detectors.

e Absolute Thresholding Detector (AT): spikes are detect-
ed when the absolute voltage exceeds a pre-determined
threshold. The threshold is usually set w.r.t. to data RMS
(root-mean-square of data amplitude) value. Here we
sweep threshold from 2.5xRMS to 5xRMS with a step
of 0.5xRMS.

e NEO Detector (NEO): the output of NEO, ¢[z(n)], is
defined as ¥[x(n)] = 22(n) — x(n + 1)x(n — 1). The
threshold for the NEO detector is set to be 5 to 11 times
of the standard deviation of ¥[z(n)].

e Continuous Wavelet Detector (CWD): we choose
biorl.5 as mother wavelet, use 8 scales covering spike
width from 0.5ms to 2ms and set the threshold from
-0.2 to 0.2 as suggested by the authors [12].

The reason of choosing these three bench-marking detectors
is mainly because they are from the amplitude based, the
energy based and the spike shape based detection algorithms
respectively which cover most widely used and discussed
detectors. For the EC-PC detector, the probability threshold
is set at 0.5-0.99 with a step of 0.05.

The quantitative evaluation is achieved by means of ROC
curves as shown in Fig. 3. The X-axis is probability of
false alarm (PFA) and Y-axis is probability of detection (PD)
which are defined as

Neq _ Nya

N, PFA = N,

where N.4,N,,Nyq and N, are the number of correctly
detected spikes, total generated spikes, falsely detected spikes
and total detected spikes. For all the detectors, a spike is seen
to be correctly detected if it is within 0.5ms of the true arrival
time given by ground truth data. The evaluation is finished
under 9 combinations of different firing rates (15Hz, 30Hz
and 90Hz) and SNRs (approximately 4.5, 3.6 and 3.0) with
each repeated 100 times.

The threshold-averaged ROC curves [13] over 100 trials
are shown in Fig. 3. The ROC curves show that no single
detection method consistently outperforms the rests in all
situations and the proposed EC-PC detector has a good
performance in all the cases. Also note that different from
AT and NEO, the EC-PC detector learns the data distribution
and adaptively set threshold so that the probability of false
alarm is less sensitive to the different recording situations,
indicating a robust detection.

PD =

IV. EXPERIMENTS ON in vivo DATA

In this section, we use in vivo data to further examine
our work. We have designed a controlled experiment and
the results are summarized in Fig. 4: a pair of microelec-
trodes are navigated into rat’s brain to identify a recording
location that gives sustained brain activities. After fixing
the recording location, an anesthesia drug is injected to
gradually stop the animal heart beating. As a result, neurons
are dying because of lack of fresh blood. Continuous neural
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(a) Estimated spike rate vs. time. The solid curves are obtained by setting the detection threshold at 3xRMS, while the dotted curves are read

from the proposed spiking probability map. Blue and black traces are results from two separate electrodes. (b) Neural data RMS vs. time. X-axis is time
in minute. Y-axis is data RMS in pV. The data have been bandpass filtered at 300Hz-5KHz. RMS estimation is performed every 5 minute. (c) Calculated
EC/PC crossing point vs. time. Each crossing point is calculated based on 20 seconds data. Y-axis is EC/PC crossing point normalized to data RMS.

recordings at 25KHz/16b start from the electrode placement
and last till the end of rat’s life (data RMS reach a floor
of around 10pV). Spike detection and simple firing rate
estimation is performed every 5 minutes using 20 seconds
data. Fig. 4(a) plots estimated firing rates using both spiking
probability map (dotted line) and amplitude thresholding
detection with 3xRMS threshold(solid line). 3XxRMS gives an
almost constant firing rate during the subject dying period.
As a comparison, the result from EC-PC detector with 0.8
probability threshold are more consistent with the experiment
expectation to have spiking rate gradually decreasing and
eventually to zero. Fig. 4(b) shows the RMS of the bandpass
filtered data at 300Hz-6KHz, where the initial value is 25-
50uV. Fig. 4(c) plots the Z%g/PC in RMS, which shows
an increasing trend over time from 1 to 4 indicating that the
spiking probability p(Z) in Fig. 2 is moving towards right
so the number of recorded spikes is decreasing. The result is
not surprising because each time, EC-PC adaptively updates
the coefficients of the neural data distribution. When animal’s
brain is dying, RMS of the recorded data is decreasing but the
EC/PC crossing point Zy¢, p, is actually increasing which
leads to less detected events. This experiment shows that EC-
PC detector is a good candidate of robust and unsupervised
detectors.

V. CONCLUSION

We have reported a novel EC-PC spike detection algo-
rithm. The basic idea of EC-PC spike detection is based on
learning and fitting the data distribution. When transformed
into Hilbert space, the Gaussian noise exhibits an exponential
distribution while the deviation from exponential function,
fitted by polynomial function, is resulted from the existence
of detectable spikes. By curve fitting these two distributions,
each recording setup or the different period in the same
recording procedure, has specific coefficients to describe its
characteristic. The detection performance of EC-PC detector
is evaluated using both synthesized data and in vivo data.
The results show that EC-PC detector is robust. Comparison
result against other widely used detectors show that although
no single detector outperforms the rest, the proposed EC-PC
detector has a good performance in all the cases.
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