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Abstract² Snoring is common in Obstructive Sleep Apnea 

(OSA) patients. Snoring originates from the vibration of soft 

tissues in the upper airways (UA). Frequent UA collapse in 

OSA patients leads to sleep disturbances and arousal. In a 

routine sleep diagnostic procedure, sleep is broadly divided into 

rapid eye movement (REM), non-REM (NREM) states. These 

Macro-Sleep States (MSS) are known to be involved with 

different neuromuscular activities. These differences should 

influence the UA mechanics in OSA patients as well as the 

snoring sound (SS). In this paper, we propose a logistic 

regression model to investigate whether the properties of SS 

from OSA patients can be separated into REM/NREM group. 

Analyzing mathematical features of more than 500 SS events 

from 7 OSA patients, the model achieved 76% (± 0.10) 

sensitivity and 75% (± 0.10) specificity in categorizing REM 

and NREM related snores. These results indicate that snoring is 

affected by REM/NREM states and proposed method has 

potential in differentiating MSS. 

I. INTRODUCTION 

Obstructive sleep apnea (OSA) is a highly prevalent 

disease among adults [1] in which upper airway (UA) 

collapses during sleep. A complete UA collapse is termed as 

apnea while a partial collapse is known as hypopnea [2]. 

Frequent UA collapse and associated arousals can seriously 

disrupt the overall sleep architecture of a patient. Fatigues, 

day time sleepiness, lack of concentrations are most common 

diurnal symptoms while snoring, chocking, gasping are the 

common nocturnal symptoms of OSA [1]. OSA is a serious 

health concern as it increases risks of developing 

cardiovascular disease, diabetes, stroke and neuro-cognitive 

deficits [1]. 

Current reference technique for OSA diagnosis is 

Polysomnography (PSG). The test monitors sleep by 

recording a range of neuro-physiological and cardio-

respiratory signals throughout the night. The main outcomes 

of PSG test are OSA severity measures such as the apnea-

hypopnea Index (AHI) and the Arousal Index (AI). 

PSG also provides information about the Macro-Sleep 

Architecture (i.e. the temporal course of Rapid-Eye-

Movement (REM) sleep and non-REM (NREM) sleep [2]) 

of the patient and subsequent diagnostic measures in terms of 

REM and NREM. This could provide more detail about the 

quality of sleep that is unavailable via the overall indices. 
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In routine sleep diagnostic procedures, MSS is done 

manually by applying complex and visual scoring rules 

simultaneously on multiple electrophysiological signals (e.g. 

EEG, EOG, EMG) [2, 3]. The process is subjective, time-

consuming, tedious and costly. In general, due to the need 

for technical expertise and complexity, MSS scoring is not 

included in devices targeting for mass screening of OSA.  

Snoring is one of the earliest common symptoms of OSA. 

Snoring originates from the vibration of the soft tissues (e.g. 

tongue, soft palate, pharyngeal wall) in the UAs [4]. UA 

muscle activations [5, 6] and cross-sectional area [5] are 

reported to be varied with REM and NREM sleep. Muscle 

tone variation with MSS states is one of the major reasons 

for the change of acoustical properties of UA (and hence 

snore characteristics).  

Recent studies reveal that properties of snoring sound 

carry vital information related to the UA collapse which has 

potential in characterizing OSA/Non-OSA [7-9]. However a 

very few researchers have looked at the effect of MSS on 

snore. To the best of our knowledge only one group of 

researchers have attempted [10] to derive MSS specific 

information from snores of OSA patients. The group 

investigated the duration and peak spectral components 

(100-300 Hz) of snores from contact tracheal microphone on 

7 OSA patients. The study reported in [10] was limited to a 

presentation of descriptive statistics of snores from known 

sleep states where the results were not validated on a 

prospective dataset. Moreover, snore sounds have bandwidth 

extending beyond 10 kHz while the bandwidth of a tracheal 

recording is far below this.  

In this context, we hypothesise that variation in UA 
muscle activities due to MSS states are embedded in snore 
sounds and snore features can be used to identify these 
states.  

In this paper we developed a novel method based on 
logistic regression (LRA) model to explore this hypothesis. 
We extracted characteristics features of snore sounds 
recorded from non-contact microphones and applied the 
LRA model to learn and validate the properties of REM and 
NREM related snores. The overall methodology followed in 
this paper is described in the next Section. 

II. METHOD 

A.  Data Acquisition  

Data acquisition environment for the work of this paper 
was the Sleep Diagnostic Laboratory of The Princess 
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Alexandra Hospital, Brisbane, Australia. Our subject 
population includes patients referred to the hospital for 
routine PSG test and an informed consent was made. 

Clinical PSG equipment (Siesta, Compumedics®, 
Sydney, Australia) was used for the standard set-up protocols 
in [2]. Overnight (6-10 hours) audio recordings were carried 
on simultaneously with PSG through a separate high fidelity 
computerized data acquisition system. The sound recording 
system consists of a matched pair of low-noise free-field 
microphones having a hypercardoid beam pattern (Model 
NT3, RODE, Sydney, Australia). A professional quality pre-
amplifier and A/D converter unit, (Model Mobile-Pre USB, 
M-Audio, California, USA) was used for data acquisition 
with a sampling rate of 44.1 KHz and 16 bit/sample 
resolution. The nominal distance from the microphones to 
the mouth of the patient was 50cm.  

Standard sleep scoring rules [3] and AASM guidelines 
[2] were followed for the diagnosis. We denoted full night 
audio data as snore related sound (SRS) recordings. For each 
patient, we collected SRS along with the complete PSG 
dataset and standard diagnostic reports from the hospital.  

B. SRS Data Pre-processing   

 Our focus is the effects of MSS states on snore 
properties. In addition to sleep stages, body position can also 
affect the UA during sleep, due to the effects of gravity on 
the UA mechanics. In this paper, to control any position 
related effects, we limited our study to snore sounds 
associated with supine sleep. 

A typical snore sound consists with inspiratory and 
expiratory phases. During the inspiratory phase of breathing 
there is a stronger tendency for airway narrowing/collapses 
due to the negative pressures developed within the UA. This 
should provide an ideal opportunity to observe the balance 
between negative pressures and muscle activities that keep 
the airway open. In this paper, we considered only the 
inspiratory part of snore to capture this dynamic state of the 
UA during sleep. 

Overnight SRS recording in the hospital may contain 
snore sounds, breathing, speech sounds from the patient and 
also background and electrical noises. To avoid speech and 
other sounds, we selected snore samples manually from the 
SRS during NREM and REM sleep in supine position. Then 
the samples were passed through a high pass filter (5

th
 order 

Butterworth filter with cut off frequency at 20 Hz) to remove 
the low frequency noises from the recording environment.  

We used arithmetic mean of the signals recorded from 
the two microphones for further analysis. Let s(n) represents 
the mean inspiratory part of n

th
 snore sample, where n = 

�����«�1��N represents the total number of collected snores 
from P patients. We segmented each s(n) into k number of 
equal sized blocks where sk(n) indicates the k

th
 sub-block.  

C. Feature Extraction    

1) Pitch Period   

In speech processing [11], pitch is the fundamental 
frequency of speech signal. Considering the similarities 

between snore sound and speech [8], sleep stage related 
muscle tone reduction in the UA with increased inspiratory 
effort should have modification on the fundamental 
frequency of snore. Pitch Period (PP) in OSA patients is 
found to carry vital information about the UA collapse [7]. 
We computed the PP of sk(n) using autocorrelation with 
centre clipping algorithm as described in [12].   

2) Formant Frequencies  

Formants are the resonance frequencies of the vocal tract 
[11]. Different formant are considered to represent the 
functionality of different sections of vocal tract (i.e. F1-F3 
corresponds to the pharyngeal constriction, tongue 
advancement and lip-rounding respectively [11]). In this 
paper, we considered F1 and F2 of snores in our feature set 
and used Linear predictive coding (LPC) scheme with the 
Yule±Walker autoregressive parameter estimation method in 
[13] to estimate the formants of sk(n). 

3) Non-Gaussianity Score 

A typical snore sound might have voiced, silence and 
unvoiced components. Voiced component of snore is the 
pseudo periodic sequences with detectable pitch [14] while 
unvoiced component is the aperiodic sequences without 
detectable pitch. Change in the UA muscle activity during 
MSS states should vary the nature of vibration. Non-
Gaussianity Score (NGS) provides a measure of deviation 
from the Gaussian distribution of data. We employed normal 

probability plot J of snore segment sk(n) to compute the 

deviation from the reference Gaussian probability G using 

(1). In (1), k
\ is the NGS of sk(n) and L is the length of 

sk(n). The details of NGS can be found in [15]. 
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4) Log Energy 

Voiced or unvoiced components of snore sound is 
considered to differ in terms of energy content [14]. 
Accordingly, energy of snore segment will differ in REM 
and NREM sleep. We used (2) to compute the Log Energy 
(LogE) of sk(n). In (2), L is the length of sk(n) and H  is an 

arbitrary constant to avoid any computation of log 0. 
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At this stage, if P patients have N
NR

 snore samples from 
NREM sleep and N

R
 snore samples from REM sleep, then 

the size of the feature matrix became N
NR

 × k u f for NREM 

and N
R
 × k u I�IRU�5(0��:KHUH�µN¶�LV�WKH�VQRUH�VXE-blocks 

DQG� µI¶� UHSUHVHQWV� ILYH� IHDWXUHV� FRPSXWHG� LQ� WKis section. 
These two feature matrices were then used for classification 
of REM and NREM related snores with the help of a LRA 
model. LRA is a generalized linear model, which uses 
several independent predictors (features) to estimate the 
probability (Y) of a categorical event (dependent variable).  
In our work, the dependent variable Y is assumed to be equal 
WR� µ]HUR¶� �Y  ����IRU�5(0�VQRUH�VDPSOHV�DQG�µRQH¶��Y = 1) 
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for NREM snore samples. The model used regression 
function to estimate the probability of Y from the 
independent variables (i.e. features) as below: 
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In (3) and (4) f1, f2 «IF are the elements of feature vector 

(independent variables), E0 is called the intercept and E1, E2 
and so on are called the regression coefficient of independent 
variables obtained from the Training set. We used the 
Receiver-Operating Curve (ROC) analysis on the Training 

model to select the optimal decision threshold �O from Y (that 

the snore is from NREM sleep if Y is above O otherwise 
REM) to maximize the performance. We calculated the 
performance of the LRA model in terms of area under the 
ROC (AUC), sensitivity and specificity of the differentiation 
of REM and NREM snores from the ROC. 

III. RESULTS 

A. Clinical Database  

For the work of this paper we analyzed N = 546 snore 
samples from P = 7 patients SRS data recordings. Out of N = 
546 events N

NR
 = 391 events were from NREM sleep and N

R
 

= 155 were from REM sleep. Table 1 presents the 
demographic details of each patients and the record of 
collected REM/NREM snore samples. We varied number of 
sub-blocks k from 1 to 10. 

B. Classification and validation of REM/NREM Snores  

We developed a LRA model to classify snores into 
subsequent REM and NREM stages and used Receiver-
Operating Curve (ROC) analysis to calculate the sensitivity 
and specificity of classification performance. We used the 
snore features computed in Section 2 for two cases of 
classification: (i) within-patient and (ii) across-patient. 

1) Case 1: Within-Patient  

REM and NREM related snore samples from each 
individual patient were considered for mutually exclusive 
Training and Testing set.  

TABLE I.  PATIENT DETAILS AND COLLECTED SNORE SAMPLES (P1-
P7 = PATIENT NO., BMI = BODY MASS INDEX, RDI = RESPIRATORY 

DISTURBANCE INDEX, NR  = NREM, R = REM, SNR
 = NREM SLEEP, SR

 = 

REM SLEEP, NNR
  = NREM SAMPLES, NR

  = REM SAMPLES) 

Details P1 P2 P3 P4 P5 P6 P7 

Age 51 51 50 61 46 29 27 

BMI 30.8 31.8 42.2 35.6 40.9 36.8 45.5 

RDI 11.4 13.8 19.5 30.8 33.0 48.2 94.4 

R AHI 56.5 28.0 40.9 54.1 61.9 18.8 124.0 

NR AHI 10.3 9.3 15.9 26.9 29.4 56.1 87.4 

%SNR 97.5 76.1 85.4 84 87 78.8 80.9 

%SR 2.5 23.9 14.6 14.0 11.3 21.1 19.2 

NNR 68 69 31 39 50 26 108 

NR 32 27 15 12 7 20 42 

 

Training set consists of 50% of N
R
 samples and 50% of 

N
NR

 samples from a patient and the Testing set included the 
remaining 50% of N

R
 and N

NR
 samples of that patient. Later 

we applied the feature matrix of the Training and Testing set 
to the LRA model respectively for learning and cross-
validation.  

Classification results for this case are presented in Table 
2. Number of sub-blocks k varied from 1 to 2. It can be 
observed in Table 2 that the Training performance can 
achieve 100% sensitivity, specificity and AUC for most of 
the patients. This performance remains steady as k increased 
to 2. For the Testing Network in Table 2, performance varied 
from 70-100%. Low performance with increasing k in the 
Testing Network might be from the increase in size of the 
feature matrix with k. 

2) Case 2: Across-Patient 

In this case, we followed the Leave-One-Out cross 
validation (LOOCV) technique to validate the LRA model. 
LOOCV included all features of N

R
 and N

NR
 samples from 6 

out of 7 patients for Training and the features from the 7
th

 
one for Testing. This was repeated for 7 times so that each of 
the 7 patients was used for validation at least once.  

TABLE II.  SUMMARY OF PERFORMANCE MATRICES OF TRAINING AND TESTING NETWORK FOR EACH PATIENTS WITH VARIABLE SEGMENT LENGTH         

(K = NUMBER OF SUB-BLOCKS, AUC = AREA UNDER THE ROC CURVE, SEN = SENSITIVITY AND SPEC = SPECIFICITY OF ROC CURVE) 

Data Set 

k = 1 
 

k = 2 

Patient No. 
 

Patient No. 

1 2 3 4 5 6 7 
 

1 2 3 4 5 6 7 

Training Set Performance 

AUC 85 100 98 100 100 100 95 
 

99 100 100 100 100 100 96 

Sensitivity 81 100 100 100 100 100 90 
 

100 100 100 100 100 100 95 

Specificity 76 100 87 100 100 100 89 
 

97 100 100 100 100 100 94 

Testing Set Performance 

AUC 72 98 98 90 87 92 92 
 

84 98 91 87 76 74 84 

Sensitivity 69 100 100 83 75 90 86 
 

81 93 100 83 75 80 86 

Specificity 71 94 94 85 76 85 87 
 

79 91 88 70 64 85 81 
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Figure 1.  ROC Curves of Testing Dataset in Case 2 from LRA model. 

This figure represents the ROC of LOOCV for three out of 7 different set of 

combinations of the patients. 

Fig. 1 shows the classification results for k=1. Table 3 
represents the mean and standard deviation of AUC, 
sensitivity and specificity as calculated from the ROC 
curves. We varied k from 1 to 10. It is to be noted in Table 3 
that maximum performance in the Training Network is at 
k=10 while for Testing Network it is at k=1. It indicates that 
more details about the characteristics of snore might be 
obtained by increasing number of sub-blocks k. However, 
this could affect the performance of the Testing Network as 
the size of the feature matrix increased k times compared to 
the number of samples being used. Overall the performance 
of the classifier reached to 76%/75% sensitivity/specificity 
and 83% AUC for k = 1.  

IV. CONCLUSION 

In this paper, we developed an LRA model and showed 
the possibility that the effect of REM/NREM sleep states 
embedded into the properties of snore sound can be utilized 
to classify MSS states. The results indicate that the model 
can achieve up to 85%-90% (sensitivity and specificity) for 
each individual patient. Both the sensitivity and specificity 
drops to 75% when computed across a group of patients.   

The proposed approach illustrates the potential for 
extracting macro-sleep staging information from OSA 
patients based on snoring. It may find valuable use in snore-

sound based non-contact population screening/monitoring 
devices for OSA. The method requires further validation on 
larger clinical datasets and across different sleep positions. 
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TABLE III.  SUMMARY OF PERFORMANCE MATRICES OF TRAINING AND TESTING NETWORK FOR THE OSA PATIENT GROUP 

Data Set k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 

Training Set Performance 

AUC Mean (Std) 82 (2) 84 (2) 87 (2) 86 (2) 89 (1) 88 (1) 89 (1) 90 (1) 90 (1) 90 (1) 

Sensitivity Mean (Std) 76 (3) 77 (2) 81 (2) 80 (1) 83 (2) 81 (2) 82 (2) 83 (2) 83 (2) 84 (1) 

Specificity Mean (Std) 75 (3) 77 (2) 81 (1) 80 (1) 83 (2) 81 (1) 82 (2) 83 (1) 83 (2) 83 (1) 

Testing Set Performance 

AUC Mean (Std) 83 (12) 73 (9) 75 (10) 69 (12) 72 (10) 70 (10) 70 (11) 69 (11) 69 (11) 69 (13) 

Sensitivity Mean (Std) 76 (10) 69 (5) 68 (9) 66 (9) 70 (9) 66 (8) 67 (9) 66 (9) 68 (8) 66 (7) 

Specificity Mean (Std) 75 (10) 67 (6) 68 (8) 65 (9) 67 (8) 66 (8) 64 (8) 66 (9) 65 (8) 65 (7) 
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