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Abstract— In this paper we applied altogether 13 classifi-
cation methods to otoneurological disease classification. The
main point was to use Half-Against-Half (HAH) architecture
in classification. HAH structure was used with Support Vector
Machines (SVMs), k-Nearest Neighbour (k-NN) method and
Naïve Bayes (NB) methods. Furthermore, Multinomial Logistic
Regression (MNLR) was tested for the dataset. HAH-SVM with
the linear kernel achieved clearly the best accuracy being 76.9%
which was a good result with the dataset tested. From the other
classification methods HAH-k-NN with cityblock metric, HAH-
NB and MNLR methods achieved above 60% accuracy. Around
77% accuracy is a good result compared to previous researches
with the same dataset.

I. INTRODUCTION

Vertigo can be a symptom of many different diseases
having overlapping symptoms which makes diagnosis of a
vertiginous patient challenging [9]. Machine learning meth-
ods can be a valuable tool for diagnostic purposes. By means
of machine learning and data mining we can find patterns
from datasets which are collected from the earlier cases. A
physician can use the information obtained from a dataset
when making a final diagnosis. However, the difficulty of
otoneurological diseases set up a challenge for the methods
used.

In [16] One-vs-All (OVA) and One-vs-One (OVO) meth-
ods were used with SVM [2] and k-NN [12] classification
methods. Compared to OVA and OVO methods HAH struc-
ture [7], [10] has advantages, especially in the low number of
classifiers and the computational efficiency. HAH has been
applied for instance to benthic macroinvertebrate classifica-
tion in [7] and the promising results were a motivation for
this paper. The use of HAH structure is a novel approach to
otoneurological disease classification for this dataset.

In this work we applied Half-Against-Half structure with
SVMs, k-NN and NB [11] classifiers to the classification.
Furthermore, we tested also MNLR [1] for the classification
problem. The paper has following structure. In Section II
Half-Against-Half method is explained and SVM is intro-
duced. Section III is left to results and data description.
Section IV is for conclusions and discussion.
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II. METHODS

A. Half-Against-Half Structure

Half-Against-Half (HAH) architecture was originally de-
veloped for Support Vector Machines and it was introduced
in the article by Lei and Govindaraju [10]. HAH is a general
classification architecture which also can be used with other
classification methods than SVM. It uses a binary tree where
each one of the nodes includes a binary classifier. In this
paper we applied SVM, k-NN and NB classifiers to HAH
architecture.

Classification of a test example begins from the root and
continues via edges until a leaf is reached. In the leaf there is
a predicted class label for a test example. The main issue with
HAH structure is to find the correct way to divide classes
into two subsets in nodes. Some examples for solving this
problem are, for instance, hierarchical clustering [10] and
Scatter method [8]. When the number of classes in a dataset
is small even a random division can be used.

At first, to test how the HAH structure works with the
above mentioned classifiers on the otoneurological data,
we created one example HAH architecture (Figure 1) that
we tested with all the methods. The class divisions into
subsets were made based on the disease descriptions and
their similarities described in [5], [9] and confusion matrices
of previous researches to search for the most similar disease
class. The diseases reported similar were collected into the
same group. At the same time two groups within a node were
tried to keep as balanced by the number of cases as possible.
The class division into similar groups is challenging with
otoneurological data because all of the diseases have more
or less similar symptoms and, in addition, data contains also
cases having confounding symptoms, for example, benign
positional vertigo cases can have age-related hearing loss.

B. Support Vector Machine

Suppose that we have a labeled training set {(xi,yi)}l
i=1

where xi ∈ Rn and yi ∈ {−1,1}. Optimal hyperplane mini-
mizes 1

2‖w‖
2 with respect to constraints yi[〈w,x〉+ b] ≥ 1.

A hyperplane can be found with the easiest way by solving
so called Wolf dual form [2], [14]:

maxW (ααα) =
l

∑
i=1

αi− 1
2

l

∑
i=1

l

∑
j=1

αiα jyiy j〈xi,x j〉 (1)

with respect to ∑
l
i=1 αiyi = 0 and 0 ≤ αi ≤ C where C is

a user-defined parameter and αi’s are the same Lagrange
coefficients as in primal form (see details [2]). A new
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example x can be classified according to the sign of the
decision function

f (x) =
l

∑
i=1

αiyi〈x,xi〉+b. (2)

Kernel functions, K(x,z) = 〈φ(x),φ(z)〉 where φ is a
nonlinear mapping to a higher dimensional space, are used
for classification when the data is not linearly separable.
Typically in literature used kernels which are used in this
paper as well are: linear kernel 〈x,z〉, polynomial kernels
(1+ 〈x,z〉)deg where deg ∈ N is the degree of the kernel,
Radial Basis Function (RBF) exp(−‖x−z‖2/2σ2) with σ >
0 and Sigmoid kernel tanh(κ〈x,z〉+ δ ) with κ > 0 and
δ < 0. Valid kernels satisfy conditions presented in Mercer’s
theorem [2], [3]. The use of kernels modifies a decision
function so that the inner products in (2) are replaced
with 〈φ(xi),φ(x j)〉. Otherwise, the classification of a new
example goes similarly as before.

III. EXPERIMENTAL RESULTS

A. Data Description and Test Arrangements

An otoneurological dataset used in this research contains
1030 vertigo cases from nine different vertigo diseases (Table
I). There are 94 attributes from which 77 attributes are
qualitative, mostly binary, and 17 quantitative. Attributes de-
scribe a patient’s health status: occurring symptoms, medical
history and clinical findings (otoneurologic, audiologic and
imaging tests). Clinical tests are not done to every patient
and, therefore, there were missing values in several test
results. In total, the data had about 11% missing values,
which allowed using imputation. Imputation was needed due
to the calculation of the SVM method. Missing values of
qualitative attributes were substituted with the class modes
and other attributes with the class medians.

Dataset was first split to training and test sets by using
10 times 10-fold cross-validation. For the search of optimal
parameters for SVMs, every training set was split to training
and validation sets by using 3-fold cross-validation. Optimal
parameter values for HAH-SVM were determined according
to the mean accuracy (accuracy is here determined as a trace
of a confusion matrix divided by the sum of all elements
in confusion matrix) of validation sets. When the optimal
parameters were found (shown in Table II), SVMs were
trained again with the full training data. Because HAH-SVM
includes several binary SVMs, we applied the procedure
given in [6] where all SVMs are trained with the same
parameter value.

Polynomial kernels including the linear kernel were tested
with 100 parameter values and RBF and Sigmoid kernels
were tested 10000 parameter value combinations. For Sig-
moid we made an agreement of κ =−δ . The parameter value
space for C, σ and κ was {0.1,0.2, . . . ,10}. For parameter
δ it was {−10.0,−9.9, . . . ,−0.1}. In the case of k-NN, odd
values from 1 to 9 were tested with each distance measure.
The distance measures used with the k-NN classifier were
Cityblock, Correlation, Cosine and Euclidean measures [17].

The best k value was determined according to the mean
accuracy of validation sets.

All the tests were made by using Matlab 2010b with
Bioinformatics Toolbox and Statistics Toolbox. Furthermore,
in the case of HAH-SVM we applied the binary SVM and
k-NN implementations of Matlab in Bioinformatics Toolbox
and Naïve Bayes and Multinomial Logistic Regression im-
plementations in Statistics Toolbox. For Naïve Bayes kernel
density estimation [4], [13] was applied. Least Squares
method [15] was used in finding optimal hyperplane for
SVM.

TABLE I
FREQUENCIES AND PERCENTAGES OF DISEASE CLASSES IN THE

DATASET.

Disease name Size %
Acoustic Neurinoma ANE 131 12.7
Benign Positional Vertigo BPV 173 16.8
Menière’s Disease MEN 350 34.0
Sudden Deafness SUD 47 4.6
Traumatic Vertigo TRA 73 7.1
Vestibular Neuritis VNE 157 15.2
Benign Recurrent Vertigo BRV 20 1.9
Vestibulopatia VES 55 5.3
Central Lesion CL 24 2.3

TABLE II
OPTIMAL PARAMETER VALUES FOR HAH-SVM WITH DIFFERENT

KERNEL FUNCTIONS.

Kernel C σ κ δ

Linear 0.1 − − −
Polynomial deg = 2 0.1 − − −
Polynomial deg = 3 0.1 − − −
Polynomial deg = 4 0.1 − − −
Polynomial deg = 5 0.1 − − −
RBF 8.5 10.0 − −
Sigmoid 0.3 − 0.1 −0.1

B. Results

As a final result a mean confusion matrix was evaluated.
True positive rates (TPR) and total accuracies (in percent-
ages) were the main evalution measures. These measures are
presented in Table III. Moreover, the standard deviation of
accuracies and TPRs are shown. In Table III we boldfaced
the best TPR and accuracy for each class to ease the analysis
of results.

Total accuracies for different HAH-k-NN combinations
varied from 47.6% to 61.5%. HAH-NB and MNLR had total
accuracies of 65.9% and 68.3%, respectively. For different
HAH-SVM combinations, total accuracies varied from 7.8%
to 76.9%. HAH-SVM with linear kernel yielded the highest
total accuracy (76.9±3.5%) and the highest TPRs for six
classes (BPV, SUD, TRA, VNE, BRV and CL). For the
classes ANE, MEN and VES, HAH-SVM produced the
second, third and fourth highest TPRs, respectively. The
highest total accuracy is at the same level with OVA SVM
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ANE

VES CL

MEN SUD BPV BRV TRA VNEVES vs. CL

ANE vs. {VES,CL} MEN vs. SUD BPV vs. BRV TRA vs. VNE

{ANE,VES,CL} vs. {MEN,SUD} {BPV,BRV} vs. {TRA,VNE}

{ANE,MEN,SUD,VES,CL} vs. {BPV,TRA,VNE,BRV}

Fig. 1. Half-Against-Half structure used for otoneurological disease classification.

linear result in [16], but other classifiers in [16] obtained
higher mean accuracies than 76.9%.

The dataset had a dichotomy class distribution. Four
classes (ANE, BPV, MEN and VNE) had above 130 in-
stances in the dataset while the rest of the classes had
only below 80 instances in a dataset. With HAH-k-NN
for all measures, HAH-NB, HAH-SVM with the quadratic,
cubic and RBF kernels the largest classes obtained the
highest TPRs. Furthermore, in HAH-SVM results with the
linear kernel only class TRA obtained higher TPR than the
aforementioned classes. The smallest classes, BRV and CL,
were in most cases recognized below 20% TPR. The only
exception was HAH-SVM with the linear kernel by which
38.0±32.7% result was obtained for class BRV. For class
BRV in [16] the highest TPR was 21.0% with the linear
kernel and OVA method, so improvement was gained for this
class with HAH structure. In [16] 28.5% TPR was achieved
on class CL with the RBF kernel and OVO method and now
with the linear kernel 17.5±25.7% result was obtained.

In the case of VES higher TPRs were achieved in [16]
with the RBF kernel and OVO method (TPR 22.8%) and with
the 5-NN OVA classifier (TPR 20.7%) than with any of the
methods used in this research. Now, with the quadratic kernel
the highest TPR 17.1±16.2% was obtained for VES. For
class VNE TPRs in [16] were ranging from 81.4% to 88.1%.
Only HAH-SVM with the linear kernel reached a similar
level having 87.6±6.6% TPR. Class TRA had interesting
results because only two methods, HAH-SVM with the linear
kernel and MNLR, were able to beat the limit of 70.0%
whereas in [16] all seven methods were able to gain above
70.0% TPR. A surprising results was gained for class SUD
where HAH-SVM with the linear kernel and MNLR were
the only methods, which got above 57.0% TPR. Especially,
the results of k-NN with all measures were exceptionally low
compared to results in [16] where 94.3% TPR was achieved
with 5-NN and OVO method.

Menière’s disease (class MEN) was recognized better with
HAH-NB (96.4%) and HAH-SVM with the RBF kernel
(95.5%) than with OVO or OVA methods in [16]. Further,
HAH-k-NN with cityblock metric and HAH-SVM with the
linear kernel reached above 80.0% TPR. BPV was identified
with 70.9% TPR by using HAH-SVM with the linear kernel
when in [16] most of the results were better than 70.9%.

Class ANE achieved 90.8±9.0% TPR with MNLR and
89.4±8.3% result with HAH-SVM and linear kernel. The
results of these two methods were at the same level as OVA
and OVO methods in [16].

IV. DISCUSSION AND CONCLUSIONS

This study showed the preliminary results with one HAH
tree combined with SVM, k-NN and NB classifiers. HAH
structure with k-NN classifier did not achieve as good results
as were achieved with 5-NN OVA and OVO in [16]. One
reason might be the used distance measures. In [16], k-NN
was used with HVDM [17] measure whereas in this study
HAH-KNN was used with four other measures. HVDM
takes into account qualitative attributes properly, apart from
the measures used in this study. Furthermore, the size of
k (especially for the classes BRV, VES and CL) and the
structure of the HAH tree itself could have effected to HAH-
k-NN results.

In the case of HAH-SVM the simplest method was the best
alternative. The linear kernel achieved 76.9±3.5% accuracy
being the best method in this study and the only method
which was comparable with the results of OVA and OVO
methods in [16]. The large deviation of mean accuracies
ranging from 7.8% to 76.9% shows the importance to search
widely and thoroughly for the best classification method and
to try to develop new perspectives to traditional classification
methods.

Overall, the smallest classes were also the most difficult
classes to recognise in this study. The two smallest classes,
BRV and CL, were in most cases recognized below 20% TPR
which is understandable since the 10-fold cross-validation
was used and then these classes might have only from 2 or
3 cases in a test set. If one of these cases was misclassified,
it decreased TPR greatly. Moreover, BRV, VES and CL are
difficult to identify due to nature of the disease. For instance
patients with BRV have been reported to develop typical Me-
niere’s disease (MEN) and benign positional vertigo during
years.

Because the structure of the HAH tree is crucial for
the classification results, in the future we will test several
combinations of different tree structures and classification
methods to find the most appropriate way to divide the
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TABLE III
RESULTS (%) WITH DIFFERENT CLASSIFICATION METHODS.

Method/Class ANE BPV MEN SUD TRA VNE BRV VES CL Accuracy
HAH-k-NN (Cityblock) k = 7 85.5 59.9 80.8 10.1 17.7 72.5 0.0 7.0 0.0 61.5
StdDev 8.6 10.2 6.2 12.1 13.4 10.8 0.0 10.1 0.0 3.8
HAH-k-NN (Correlation) k = 9 68.3 44.7 68.8 10.4 2.3 46.6 0.0 2.1 8.7 47.6
StdDev 10.0 9.9 6.5 13.5 5.9 12.1 0.0 5.8 17.3 3.5
HAH-k-NN (Cosine) k = 9 68.5 44.6 69.5 11.0 1.6 46.9 0.0 2.0 8.7 47.9
StdDev 10.1 10.0 6.9 13.4 4.5 12.1 0.0 5.6 17.3 3.6
HAH-k-NN (Euclidean) k = 7 72.2 41.5 66.9 4.3 11.5 55.9 0.0 6.9 0.0 48.8
StdDev 11.3 10.4 7.1 8.7 10.7 11.8 0.0 10.6 0.0 4.1
HAH-NB 66.6 52.9 96.4 1.9 46.9 80.9 0.0 0.0 3.7 65.9
StdDev 12.1 12.1 3.0 6.7 16.5 9.8 0.0 0.0 12.7 3.5
HAH-SVM Linear 89.4 70.9 86.1 66.3 90.8 87.6 38.0 9.0 17.5 76.9
StdDev 8.3 9.2 5.1 22.3 11.1 6.6 32.7 12.0 25.7 3.5
HAH-SVM Pol. deg = 2 63.6 52.3 54.3 38.0 43.8 57.3 10.5 17.1 13.8 50.4
StdDev 13.3 11.8 8.6 21.0 16.9 12.2 20.5 16.2 23.7 4.7
HAH-SVM Pol. deg = 3 48.3 47.6 40.5 19.8 39.4 53.6 11.0 7.5 12.2 40.7
StdDev 14.4 11.0 9.0 18.7 17.6 12.2 23.1 10.4 20.9 4.6
HAH-SVM Pol. deg = 4 33.9 39.2 31.3 14.6 35.3 45.9 9.5 9.2 10.2 32.6
StdDev 14.0 10.1 7.6 16.0 16.9 12.4 21.0 11.9 19.4 3.9
HAH-SVM Pol. deg = 5 25.8 32.7 24.8 12.5 26.4 38.4 10.5 6.8 6.8 26.3
StdDev 11.6 10.8 7.5 14.4 16.7 12.4 21.7 10.6 16.9 3.9
HAH-SVM RBF 17.2 22.5 95.5 0.0 8.8 30.9 0.0 5.6 0.0 44.0
StdDev 9.8 8.3 2.9 0.0 8.9 11.0 0.0 9.6 0.0 2.8
HAH-SVM Sigmoid 4.5 20.0 0.0 18.0 42.0 0.0 7.0 1.0 8.0 7.8
StdDev 18.9 40.2 0.0 38.6 49.6 0.0 25.6 10.0 26.3 4.7
MNLR 90.8 65.1 73.6 57.9 70.4 78.2 1.5 16.0 17.2 68.3
StdDev 9.0 24.1 25.2 28.5 27.3 27.1 8.6 15.9 28.1 18.9

classes into subsets. The Scatter method, hierarchical cluster-
ing and confusion matrices of different classification methods
will be used to form class divisions. A special interest will
also be given to a hybrid HAH structure where all nodes in
a tree do not consist of the same classification method, but
for every node an optimal method is searched for. This may
improve classification results.
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