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Abstract— In this paper, we introduce a Concept Graph
Engine (CG-Engine) that generates patient specific personalized
disease ranking based on the laboratory test data. CG-Engine
uses the Unified Medical Language System database as medical
knowledge base. The CG-Engine consists of two concepts
namely, a concept graph and its attributes. The concept graph
is a two level tree that starts at a laboratory test root node and
ends at a disease node. The attributes of concept graph are:
Relation types, Semantic types, Number of Sources and Sym-
metric Information between nodes. These attributes are used
to compute the weight between laboratory tests and diseases.
The personalized disease ranking is created by aggregating
the weights of all the paths connecting between a particular
disease and contributing abnormal laboratory tests. The clinical
application of CG-Engine improves physician’s throughput as
it provides the snapshot view of abnormal laboratory tests as
well as a personalized disease ranking.

Index Terms— Personalized Risk, Concept Graph, Labora-
tory test, Disease Ranking, UMLS.

I. INTRODUCTION

The laboratory tests play an important role in a clinical
scenario for screening and/or diagnosis of diseases. It was
observed by Mindemark et al. [1] that in a 7-year period
(2002-2008), the laboratory test usage in a hospital setup
has increased by 70% and the number of available laboratory
tests have increased by over 140%. Often in a routine annual
health check-up, close to 100 laboratory tests are performed
per patient. Majority of these tests are generic in nature as
they do not target any specific disease. However, they do
provide vital clues about the presence or absence of diseases.
Hence, physicians widely use these tests routinely. Currently
the physician-to-patient ratio in countries like India hovers
at around 6 per 10000 people [2]. This skewed physician-
to-patient ratio along with an increased usage of laboratory
tests has resulted in a physician spending majority of their
consultation time on the analysis of laboratory reports.

There were efforts made by Bauer et al. [3] to enhance a
physician’s throughput by the means of an alternative visual-
ization of the laboratory reports. In a study done by Torsvik
et al. [4], it was observed that alternative visualizations of
laboratory test reports helped clinicians in few special cases.
However, it was also observed that these techniques are not
ideal in general scenarios. These alternative visualizations
fail to increase a physician’s throughput as they lack a com-
prehensive report analysis. Hence, an automated system that
can analyse laboratory test reports and identify associated
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disease risks will greatly help in increasing a physician’s
throughput.

In this work, we introduce such an automated system
called as Concept Graph Engine (CG-Engine) that is based
on Unified Medical Language System (UMLS). The CG-
Engine takes laboratory test data as its input and generates
probable disease risks by analysing abnormal test results.
UMLS is a knowledge representation framework that in-
cludes more than 100 medical terminology sources. There
are three knowledge sources (databases) in UMLS, namely:
Metathesaurus, Semantic Network and SPECIALIST Lexi-
con. Metathesaurus along with Semantic Network is used
by Caviedes et al. [5] in finding the similarity between
two concepts of the UMLS. McInnes et al. [6] developed
a software package based on this work. Dupuch et al. [7]
exploited parameters of UMLS to find similarity between
two concepts. Co-occurrence information of the concepts
stored in MRCOC table of UMLS was used by Zeng et
al. [8] to study the sensitivities of disease-drug chemical
relationship and disease-lab chemical relationships. Volot et
al. [9] created Concept Type Lattice (CTL) using UMLS
as a source to acquire medical knowledge. Relationship
information between concepts defined in MRREL table of
UMLS was used by Liu et al. [10] for resolution of the
ambiguity between terms. The difference between the above
listed studies and our work is that in addition to using these
knowledge sources, we use the various attributes of UMLS to
construct the ”Laboratory Test-Disease” (LT-D) relationship.

This article is organized as follows. In Section II, we give
high level view of CG-Engine. The building of the graph
from the laboratory test to disease is developed in Section II-
A. The relevance of a particular test to a disease is measured
by some weights. These weights and their computation are
described in Section II-B. In Section III results of CG-Engine
are discussed with respect to liver diseases and diabetes
mellitus. Finally in Section IV we conclude the discussion
with a summary and the future scope of this work.

II. METHODOLOGY

The proposed CG Engine is based on concept graph
between laboratory test to diseases and the weight parameters
of the graph. The CG Engine is built as a two-step process;
below Subsections explain both the steps of the engine.

A. Building of Laboratory Test-Disease (LT-D) concept
graph

Building of LT-D concept graph involves creation of a
new database (DB) schema called LT-D DB out of UMLS

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 1274



Fig. 1. Concept Graph Generation Flow chart.

DB (version 2012AA). The first step of creating LT-D DB
involves finding Concept Unique Identifier (CUI) of the com-
ponent in UMLS DB. A component CUI is one that is associ-
ated with clinical laboratory test. For example “Cholesterol”
is the associated component for “Blood Cholesterol” clinical
laboratory test and its CUI is C0008377. A query is executed
on the UMLS DB to find all the entries (called UMLS
laboratory tests) that have semantic type as “Laboratory Pro-
cedure” and are directly related to the given component (see
Fig. 1). The UMLS laboratory tests that actually represent the
underlying clinical test are considered and remaining entries
are discarded. For example, the following UMLS laboratory
tests are found for “Blood Cholesterol”: ‘Serum cholesterol
measurement’, ‘Cholesterol measurement test’, ‘isolation &
purification analysis’, ‘Plasma Cholesterol Test’, ‘Serum
total cholesterol measurement’ and ‘serum LDL’. Among
them ‘isolation & purification analysis’ and ‘serum LDL’
laboratory tests are removed from the mapping list as they
are unrelated to this clinical laboratory test. In a few of
the cases, the UMLS DB query did not yield good result.
In such cases, Metathesaurus search of UMLS was used to
find relevant UMLS laboratory test entries. The degree of
relevance for a given UMLS laboratory test to a particular
clinical test is validated by using online resource [11]. The
above method is used on 100+ clinical laboratory tests and
each clinical test is mapped to one or more UMLS laboratory
tests.

The next step is to build a LT-D concept graph, which
involves querying the DB to find all the connected entries
of the UMLS laboratory test. Semantic type of each entry
is checked to classify it as either a disease node or an
intermediate node of the graph. For example if an entry has
semantic type as “Pathologic Function” then it is considered
as a disease node whereas if it has “Lipid” semantic type then
it is considered as an intermediate node. Out of 133 semantic
types, 5 types are considered for disease nodes and 62 types
for intermediate nodes. Recursive querying is performed on
the intermediate nodes to find all the directly connected
disease nodes (see Fig. 1). While building the graph, the
following path attributes are stored (see Fig. 2) along with
semantic type of nodes: Symmetric information, Number of
sources and Relation types. All the 11 valid relation types
present in UMLS 2012AA DB are considered.

Fig. 2. Concept graph with all the attributes.

Fig. 3. Laboratory Test-Disease pair weight computation flow chart.

B. Computation of Weight

In a concept graph, the relevance of a particular laboratory
test to a disease is measured by weighing its path to the
disease. Each attribute of the concept graph is heuristically
assigned a weight, for example: “Narrower Relationship”
between laboratory test to intermediate node is given weight
of 1; “Clinical Attribute” semantic type is given weight of
19. The lower weight is used to signify closer association
and vice-versa. The weight for “Number of Source” attribute
is equivalent to its value. Similarly, symmetric information
attribute has weight of 1 if true, else it is equivalent to
“Asymmetric Penalization Factor”. Based on these values,
the weight WN1−N2 between two nodes is calculated as (see
Eq. (1)):

WN1−N2
=

Rtype

S#
× Stype (1)

where Rtype represents Relationship weight (if symmetric
information is true) or Relationship weight × Asymmetric
Penalization Factor (if symmetric information is false). S# is
the Number of sources and Stype is the Semantic type weight.

The weight for LT-D pair for the path: Laboratory Test
node-Intermediate node-Disease node is the addition of
weights between the Laboratory Test node-Intermediate node
and Intermediate node-Disease node. Fig. 3 depicts the
flowchart for LT-D pair weight computation method.

1275



Fig. 4. Aggregation of weights: (a) Weights aggregated based on laboratory
test and Disease: W2 < W1 and W5 < W6. (b) Weights aggregated based
on disease: W7 < (W2−W2/W1),W4 < W3 and W5 < W6. (c) Weight
formula for each disease

The LT-D pair weights computed in above steps are for
each path of laboratory test to disease in the concept graph.
However, a laboratory test can be connected to disease
via multiple paths. Say a laboratory test L1 is connected
to disease D1 via two paths namely: Path 1 and 2 with
their respective weights as W1 and W2 (see Fig. 4(a)). The
aggregated weight between laboratory test L1 and disease
D1 is W2−W2/W1 with an assumption that W2 < W1 (see
Fig. 4(b)). For a laboratory test having N paths to a disease,
the weight is calculated as (see Eq. (2)):

γ = α

(
1−

N∑
i=2

1

βi

)
(2)

where γ represents aggregated weight between laboratory
test and disease. α is the least path weight between laboratory
test and disease. βi are the weights of the remaining N − 1
paths.

Finally, a disease weight is computed by aggregating
weights of all the contributing laboratory tests. This is in
similar lines as the computation of the LT-D pair weight (see
Eq. (2)). For a disease that is screened using M laboratory
tests, the weight is calculated as (see Eq. (3)):

δ = µ

1−
M∑
j=2

1

λj

 (3)

where δ is the disease weight. µ is the least weight of LT-D
pair. λj are the weights of remaining M − 1 LT-D pairs.
Fig. 4(b) and 4(c) shows the aggregation of weights for
disease D1, D2 and D3.

The above method of disease weights computation consid-
ers all the related laboratory tests of a disease. However, it
is a known fact that clinically only abnormal laboratory tests
are used to diagnosis/screen a disease. Hence, it is important
to consider only the abnormal laboratory test weights. This
is achieved by introduction of binary flags to each laboratory
tests. Say laboratory test L1 is represented by a binary flag
F1. The flag F1 will be true only when laboratory test L1 is
abnormal, else it will be false (see Fig. 4(c)). This method
of disease weight computation will work in all cases except
when the laboratory test with least weight is normal. In
such cases, the abnormal laboratory test with the next least
weight is considered as least weight and the computation is

Fig. 5. Disease weight computation flow chart.

performed. Fig. 5 illustrates the flow chart for disease weight
computation using weights of LT-D pair.

III. RESULTS AND DISCUSSION

The CG-Engine is verified on a wide set of clinical cases;
the engine was run on 441 cases taken from a hospital DB.
Each of the cases has information that can be broadly classi-
fied into 3 categories: laboratory test data, non-laboratory
test data like radiology reports and a set of clinician’s
annotations. The clinician’s annotations cover wide range of
information from radiology reports to diet planning. In our
experiments, CG-Engine results are verified for liver disease
and diabetes mellitus against available doctor’s annotation.
Below Subsections explain the verification methodology and
CG-Engine’s sensitivity for these two diseases.

A. Verification of CG-Engine for Liver diseases

Among the 441 cases reviewed, 149 cases have annota-
tions that are specific to fatty liver. Out of 149 cases, 112
cases are annotated based on ultrasonography report data and
in the rest of the cases, the annotations do not mention any
diagnostic methodology. However, the annotations capture
the severity level in all the 149 cases, they are categorized
into the following four types: Minimal Fatty Liver, Mild
Fatty Liver, Moderate Fatty Liver and Severe Fatty Liver.

The CG-Engine was run on all the 149 cases, as all the
cases had their corresponding laboratory test data. The CG-
Engine provides the output in the form of the list of abnor-
malities with their relative ranks for the given set of abnormal
laboratory test data. The list of all possible abnormalities
that can be given by the CG-Engine are reviewed. From this
list following 3 liver diseases are considered for monitoring:
‘Disease of Liver & Biliary System (C0267792)’, ‘Liver
Dysfunction (C0086565)’ and ‘Liver Diseases (C0023895)’.
For each case, the CG-Engine output is classified into 5
rank categories. The ranks of the above listed 3 diseases are
analyzed, the lowest rank among them is considered and the
counter in corresponding rank category is increased. Table I
shows summary of the CG-Engine result for all 149 cases.

The Table I shows that in 99 cases, one of the above 3
considered liver diseases are listed in top 10 rank by the CG-
Engine. Whereas, in 77.9% of cases one of them is listed
in top 20 by the CG-Engine. For the 112 cases that are
annotated using ultrasonography, CG-Engine listed one of
the above diseases into top 20 ranks for 88 cases (78.6%).
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TABLE I
SUMMARY OF CG-ENGINE RESULT FOR LIVER DISEASES CASES. THE

VALUES IN BRACES ARE NUMBER OF CASES

Rank

Minimal
Fatty
Liver
%(41)

Mild
Fatty
Liver
%(50)

Moderate
Fatty
Liver
%(54)

Severe
Fatty
Liver
%(4)

Total
%(149)

Top 10 58.5 (24) 60 (30) 75.9 (41) 100 (4) 66.4 (99)

Top 20 75.6 (31) 70 (35) 85.2 (46) 100 (4) 77.9 (116)

Top 30 75.6 (31) 76 (38) 90.7 (49) 100 (4) 81.9 (122)

Top 40 75.6 (31) 80 (40) 90.7 (49) 100 (4) 83.2 (124)

All 97.6 (40) 100 (50) 98.2 (53) 100 (4) 98.7 (147)

In 37 non-specific annotation cases, the top 20 rank hit rate
is 75.7%.

It is interesting to observe from Table I that in 75.6% of
Minimal Fatty Liver cases the CG-Engine could successfully
list one of the above considered diseases in top 20 ranks.
Thus, the CG-Engine shows very high sensitivity, consider-
ing the fact that Minimal Fatty Liver cases are very difficult
to diagnose by clinical examination or by ultrasonography
tests.

B. Verification of CG-Engine for Diabetes Mellitus

The CG-Engine is also verified for estimating the oc-
currences of Diabetes Mellitus using laboratory test. The
procedure used in verification in this case is similar to that
followed for verification of Liver Diseases. 166 cases out of
441 have Diabetes related clinician’s comments. Unlike Fatty
Liver comments, these comments do not mention the sever-
ity of the abnormality. So, no severity-based classification
was performed. The following two diseases are considered
for monitoring: ‘Hyperglycemia (C0020456)’ and ‘Diabetes
Mellitus (C0011849)’. For each case, the CG-Engine output
is classified into 5 rank categories. The ranks of the above
listed two diseases are analyzed, the lowest rank among
them is considered and the counter in the corresponding rank
category is increased. Table II shows the summary of the
CG-Engine result for all the 166 cases.

TABLE II
SUMMARY OF CG-ENGINE RESULT FOR 166 DIABETES CASES. THE

VALUES IN BRACES CORRESPOND TO NUMBER OF CASES

Rank
Hyperglycemia

%
Diabetes Mellitus

%
Hyperglycemia OR

Diabetes Mellitus %

Top 10 47.6 (79) 4.2 (7) 48.8 (81)

Top 20 61.4 (102) 16.9 (28) 65.1 (108)

Top 30 68.7 (114) 31.3 (52) 74.7 (124)

Top 40 77.1 (128) 46.4 (77) 88 (146)

All 99.4 (165) 99.4 (165) 99.4 (165)

The Table II shows that in 81 cases, one of the above two
considered diseases are listed in top 10 rank by CG-Engine.
Whereas, in 65.1% of cases one of them is listed in top 20

by CG-Engine. The relative lower success rate of CG-Engine
in predicting Diabetes Mellitus compared to Liver Disease
risk can be attributed to following reasons:

• Few cases where annotations like: “Please maintain the
anti-diabetic management that you have got already”
are considered as diabetes case, whereas in reality this
case may be pre-diabetes case with normal laboratory
test outcomes.

• Diabetes has many primary and secondary complica-
tions. Hence, all the 166 cases also have other diseases
like liver diseases and hypertension. These diseases have
occupied the top slots of CG-Engine output as compared
to Hyperglycemia or Diabetes Mellitus. This trend can
be seen in the above tables as there is 9.6% increase for
top 20 to top 30 for diabetic cases, whereas it is just
4% increase for same range in Liver Disease cases.

IV. CONCLUSION AND FUTURE WORKS

In overall, the CG-Engine is an effective method in
summarizing laboratory test results, giving an output as
a list of ranked risks for a given list of laboratory tests.
The CG-Engine can be effectively used as the first level
screening mechanism for wide range of clinical abnormalities
and based on its outcome further diagnostic steps can be
taken by the clinicians. This paper discusses the CG-Engine
development for finding risks based on laboratory tests.
However, the same work can be extended to find out list of
most suitable diagnostic or treatment procedures for given
set of abnormalities.
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