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Abstract— The feasibility of large network inertial mea-
surement units (IMUs) are evaluated for purposes requiring
feedback. A series of wireless IMUs were attached to a human
lower-limb laboratory model outfitted with joint angle encoders.
The goal was to discover if large networks of wireless IMUs
can give realtime joint orientation data while still maintaining
an acceptable degree of accuracy.

I. INTRODUCTION

Nearly 10 million, or 5.2%, of U.S. adults between 18-64
years are classified with an ambulatory (walking) disability
[1]. Problems in the motor and/or sensory systems can
result in impaired ambulation, a disability that is generally
associated with a decreased proprioceptive sense, i.e. not
knowing where the limbs are or what sensory information
the limbs are receiving. In order to observe motion outside
the home, devices containing accelerometers, and in some
cases gyroscopes and/or magnetometers have been widely
used, especially as wearables for older adults [2]–[10]. A
remaining challenge is evaluation in real-life settings [11].
The need for augmented feedback to improve mobility has
been demonstrated through the use of Lokomat for children
with cerebral palsy, an area that demonstrates the need for
augmented feedback [12]. A recent review found that most
studies of such devices (including commercial) had limited
effectiveness, in large part due to required in-clinic use,
suggesting future studies should allow feedback ”be applied
during a prolonged period of time,” e.g. at home [13].

The broad appeal and low-cost nature of accelerometers
has resulted in many implementations, including commercial
packages such as those from Shimmer [14] and Texas
Instruments [15]. Units such as these have high appeal for
evaluating and providing feedback to patients in the home
environment. Other applications could involve sports analysis
or even actors in settings where motion analysis cameras are
difficult to deploy.

This paper introduces our analysis of multiple units, which
each have 3-axis accelerometers, 3-axis gyroscopes, and 3-
axis magnetometers, mounted on the same rigid segments. A
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laboratory model of a lower-limb instrumented with encoders
is used for evaluation, with three units on the tibia and three
on the foot. The feasibility of large network inertial measure-
ment units (IMUs) for motion capture purposes are evaluated
by moving the lower-limb laboratory model randomly and
determining if the attached IMUs can adequately capture and
send data to a host computer for realtime feedback.

II. BACKGROUND

Each IMU contains a 3-axis gyroscope, a 3-axis ac-
celerometer, and a 3-axis magnetometer. All orientation mea-
surements are calculated from the 3-axis gyroscope which
returns a 16-bit value of the angular velocity of each axis. A
direction cosine matrix (DCM) is created to store the absolute
orientation of the IMU based on numerical integration of
each gyroscope [16]. Gyroscopes have noticeable drift over
time and numerical integration can produce significant error
over stretches of time; to counteract this, the accelerometer
and magnetometer are used to keep the device centered.
Each IMU is also equipped with an XBeeTMwireless module
to send periodic transmissions to a host computer for data
collection.

Calculation of the IMU’s rotation matrix is created with a
version of Euler’s Method of integration. The initial rotation
matrix of the IMU is determined during initialization and
each subsequent rotation matrix is determined from [16]:

R(t+ dt) = R(t)

 1 −dθz dθy
dθz 1 −dθx
−dθy dθx 1

 (1)

dθx = ωxdt (2)
dθy = ωydt (3)
dθz = ωzdt (4)

where ω is the angular velocity about each axis and dt is
a predetermined time step. Essentially, each new rotation
matrix is computed by taking the previous rotation matrix
and rotating it by small angles about each axis.

To correct for error, a few techniques are used. Because
each axis should remain orthogonal to each other, “renormal-
ization” can be used to enforce this condition [16]. First the
X and Y rows of the computed matrix are pulled off in to
separate vectors. The dot product of these two axis should
be zero because they are orthogonal. This allows a vector
error to be determined:

error = X ·Y (5)
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Fig. 1. IMU sensor with attached XBeeTMwireless transmitter.

This error is then appropriated between the two axis by half
and the Z axis is found using the cross product:

Xorthogonal = X− error
2 Y (6)

Yorthogonal = Y − error
2 X (7)

Zorthogonal = Xorthogonal ×Yorthogonal (8)

The final step is to renormalize the vectors to assure that the
magnitude of each vector is one. To decrease computation
time, a Taylor’s expansion can be done resulting in [16]:

Xnormalized = 1
2 (3−Xorth ·Xorth)Xorth (9)

Ynormalized = 1
2 (3−Yorth ·Yorth)Yorth (10)

Znormalized = 1
2 (3− Zorth · Zorth)Zorth (11)

These steps can produce accurate results for the direction
cosine matrix from the gyroscope readings. The previously
mentioned drift problems that come from using numerical in-
tegration and gyroscopes prevent completely accurate results.
To correct for this, the accelerometer and magnetometer
are used to zero the gyroscopes. The accelerometer and
magnetometer can each give an axis that does not drift
that can be used as a reference. For this particular setup,
the accelerometer was used for the X and Y axis and the
magnetometer was used to correct for rotations about Z. To
fix the drift, a simple PI controller feedback loop was used.
This allowed the corrections to be tuned such that the drift
cancelation was fast and accurate.

III. METHODS

To test the accuracy of both individual and redundant
IMUs, a mechanical leg approximating motion of a human
leg was built. This leg consists of a 3-DOF joint to simulate
the joint connection to the hip, a 1-DOF knee joint, and a 2-
DOF ankle joint. The mechanical leg’s femur bone consists
of a rigid, adjustable, telescoping aluminum rod to use the
skeleton for different body sizes. Likewise, the mechanical
leg’s tibia bone is made from the same telescoping rod.
The design of the leg allows for quick adjustment to ac-
commodate different anthropometry values that may be of
interest. Each joint has an attached magnetic encoder that
returns a 10-bit analog signal. Accuracy of the magnetic
encoders are approximately 0.35 degrees when operated
at room temperature. For this paper, the femur bone was

grounded horizontal to the floor and only the motion of the
tibia and foot were analyzed. This decision was made to
decrease complexity and focus on the accuracy of the IMUs
instead of the forward kinematics of the leg itself.

To test the accuracy of each IMU (Fig. 1) as well as the
benefit of multiple IMUs, three IMUs were attached to both
the tibia and the foot. The IMUs were mounted with the
IMU aligned with the bone (from knee to ankle and then
from ankle to toe) while the IMU’s normal vector pointed
toward the ground if the leg and foot were to be extended
out horizontally. Each IMU was programmed to send out
information packets (consisting of roll, pitch, and yaw Euler
angles as well as a time stamp synchronized across IMUs)
only when the sensor saw a degree change greater than one-
half. This allows the IMUs to be more energy efficient and
sleep when not in use. In order to ensure efficient delivery
of the data, data was transmitted as two-byte numbers for
each angle and a four-byte number for the elapsed time in
milliseconds. By using bytes for the angle data, resolution is
lost to conserve space, but this resolution is still finer than
the half a degree change needed to wake the IMU from sleep
so no data is lost.

After data collection, the host computer steps through the
data and linearly interpolates each sensor so that there is data
from each IMU at every time step. Because of the sleep-
interrupt-wake feature employed in the IMUs to preserve
battery life, data does not come in at predictable intervals. By
doing a sensor by sensor linear interpolation, this problem is
addressed. In a separate process, another program gathered
readings from the artificial leg’s joint encoders, again with
an attached time stamp.

The data collection process is as follows:
1) Turn on each sensor and zero all accelerometer and

gyroscope readings.
2) Connect each sensor to the host computer and place

each sensor in stasis.
3) Attach each sensor to the artificial leg in the orientation

heretofore mentioned.
4) Start data collection for the leg’s encoders.
5) Ping each sensor to synchronize clocks and start send-

ing data.
6) Randomly move the joints of the leg for about twenty

seconds.
7) Linearize the IMU data.
8) Apply calibration to magnetometer
The magnetometer works much like a compass. It has an

internal spindle that aligns itself with the nearest magnetic
field and it is hoped that this magnetic field is pointing toward
Magnetic North. If there are small local magnetic fields
which can be present from running electronic equipment
in the room or even the room’s structural material, the
magnetometers can produce an incorrect alignment. To make
matters worse, each magnetometer for each IMU does not
have a factory calibration done by the manufacturer so a
batch of magnetometers can behave differently.

To overcome this obstacle of misaligned magnetometer
headings, the IMUs can be centered locally by knowing the
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Fig. 2. Raw x component data for vectors calculated from the IMU. Note that although there are only 3 sensors per joint (Tibia and Foot), the foot has
enough degrees of freedom to require both a vector that is tangent to the foot and a vector normal to the foot to be calculated. The black curve represents
the true vector heading and the red, green, and blue curves represents output from the three sensors per joint.

Fig. 3. Output from calibrated sensors. Three sensors are attached to each joint and full x, y, and z components of the calculated vectors are shown. The
foot joint has enough degrees of freedom that two vectors (a tangent and normal) are needed. The black curves represent the true values of each joint and
the red, green, and blue curves represent outputs from the sensors.

true heading of the body the IMU is attached to. Much like
a scale can be calibrated by weighing a mass of known
value, the IMUs can be post calibrated by knowing the true
tangential vector heading. The leg was positioned so that it
points toward Magnetic North which means the tangential
vector of the IMU must lie in the X-Z plane. By finding the
angle the magnetometer has shifted from this heading, the
IMU can be rotated back to the correct heading.

The first step is to find out how far out of alignment the
IMU is oriented. To do this, the X and Y components of
the heading vector are considered. By finding the tangent
of the two components, the angle deviation from the X-
axis can be determined. Note that the graphical quadrant the
resultant vector is located in is very important; a resultant
vector in quadrant II for instance must be rotated counter-
clockwise to be in alignment with the X-axis. The tangent
function has a reduced range because tan( yx ) yields the same
result as tan(−y−x ). This shortcoming is resolved by using

the ATAN2 function present in most programming language
math libraries. This function expands the range of the tangent
function to [−π, π] with the knowledge of what the signs of
x and y are.

After the quadrant is determined, the sensor can be re-
calibrated and pulled back to the X-axis. This is done with
a two-dimensional vector rotation:

x′ = x cos θ − y sin θ (12)
y′ = x sin θ + y cos θ (13)

where θ is the rotation of the vector in a counter-clockwise
direction, x and y are the original vector components and
x′ and y′ are the components of the new rotated vector. The
rotation logic then becomes:
• If in Quadrant I, rotate the vector by −θ
• If in Quadrant II, rotate the vector by π − θ
• If in Quadrant III, rotate the vector by −π − θ

1232



• If in Quadrant IV, rotate the vector by −θ
The normal vector of the foot is a little more complicated

to correct because there is not a single axis to correct against.
The two compounded ankle rotations allows the normal
vector to move in all three axis. To correct for this vector,
first the IMU is correctly oriented along the axis of the foot.
Secondly, the forward vector is rotated −π

2 about the IMU’s
Y-axis. This new vector is the IMU’s normal vector. Finally,
this normal vector is rotated about the IMU’s tangential axis
by the value of roll - one of the three Euler Angles - which
is output from the sensor.

up′y = upy cos roll − upz sin roll (14)
up′z = upy sin roll + upz cos roll (15)

IV. RESULTS

Results from the raw data are shown in Fig. 2. Each
plot shows the x-component of either the tangent or normal
vector of each IMU as well as where the true heading of this
component should be as calculated from the artificial leg’s
encoders. Error from the IMU magnetometers are visible in
each plot with particular noise found in the IMUs mounted
to the foot. Fig. 3 shows the data after being calibrated using
the ATAN2 method.

V. DISCUSSION

Fig. 3 shows data that is significantly corrected from the
raw IMU data. Instead of the noisy data seen in Fig. 2, data
is consistent across IMUs and matches the expected values
calculated from the artificial leg. Some errors are still present,
for instance in Tibia Tangent X and Tibia Tangent Z, one of
the IMUs cuts across a “hump” around the 12 second mark.
This occurs because this particular sensor did not send out
data for a brief period of time. Because all of the IMU data
is linearized to provide an orientation point for all IMUs for
all time, if there is a break in data, the true curve can not be
correctly determined.

Also, the Foot Normal Y plot shows incorrect calculation
at about 9 minutes and 13 seconds. Closer examination shows
that the computed magnitude of the incorrect “humps” is
what is expected, but the sign of the data has been flipped.
When this happens, it is an indication that there is a range
error corresponding to the cos and sin functions used for
data analysis. Because these functions operate on a circle, it
is possible for an angle to move out of bounds temporarily
and produce error. More analysis is necessary to ensure that
small errors like this are no longer existent.

The IMUs are sufficient to be used in real time networked
applications as shown. For future work, the aforementioned
calculation errors need to be resolved and larger networks
of IMUs should be tested. If very large networks of IMUs
are shown to be effaceable, very accurate real time motion
capture data is possible without a dedicated lab. Effort should
be made to apply averaging methods to the IMUs to try
and arrive at more accurate and reliable information. Planned
future work consists of refining a Kalman filter that would

allow the user to trust data if it has arrived with certain
criteria such as data that is closer to nearby IMUs or to
trust data more if it comes from an IMU that pings the host
computer frequently.

The method in this paper has shown that it is possible to
get reasonably accurate information from IMUs and that it is
possible to scale the number of IMUs present on a body and
still achieve real time results. Greater networks of IMUs will
need to be tried so that lower cost motion capture systems
can be available outside of dedicated laboratories.
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