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Abstract - This paper presents the design, system structure and 

performance for a wireless and wearable diet monitoring 

system. Food and drink intake can be detected by the way of 

detecting a person’s swallow events. The system works based on 

the key observation that a person’s otherwise continuous 

breathing process is interrupted by a short apnea when she or 

he swallows as a part of solid or liquid intake process. We 

detect the swallows through the difference between normal 

breathing cycle and breathing cycle with swallows using a 

wearable chest-belt. Three popular machine learning 

algorithms have been applied on extracted time and frequency 

domain features. It is shown that high detection performance 

can be achieved with only few features. 
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I. INTRODUCTION 

According to the data from World Health Organization, 
worldwide obesity increased over 200% since 1980 [1]. It 
has been proven that obesity can cause coronary heart 
disease, type-2 diabetes, and various types of cancers [2]. 
Diet control and physical exercise are the two most 
important components of obesity control. Traditionally, 
self-reported questionnaires were widely used by 
researchers for estimating both food intake and physical 
activity levels for high-risk individuals. In recent years, 
however, accelerometers, gyroscope, pressure sensor have 
been deployed for physical activity detection with high 
detection accuracy [3]. On the other hand, not many efforts 
in wearable diet monitoring are reported in the literature. An 
instrumented system can reduce the subjectivity [4] 
associated with questionnaire based self-reporting systems.  
   An instrumented system can detect each instance of 
food/drink intake, and can have enormous significance for 
obesity control and health monitoring. Together with 
self-reporting at the high level of overall dietary habits, the 
system can transform the obesity and health management 
practices by quantifying calorie intake estimates and trends 
for its users.  

Swallow detection and analysis methods are generally 
divided into two categories, invasive and noninvasive. An 
invasive method for swallow detection is Videofluoroscopy 
which uses X-ray to monitor swallowing process in order to 
evaluate patients with neurological conditions affecting 
swallowing [5]. While providing ample information about 
different aspects of the swallow process, these methods are 
too involved and cannot be used for everyday monitoring and 
food/drink intake analysis purposes. Non-invasive methods 
use biological signals such as electromyography, sound, and 
movement to detect swallows. Surface electromyography 
(SEMG) and sound signal are used to detect the activation of 
muscles and the sound associated with swallow events [6]. 

The SEMG electrodes are normally attached to the bare skin 
in the neck region, which may raise user acceptability issues 
for prolonged usage due to cosmetic and safety reasons. A 
two-microphone system is developed in [7] for recording 
chewing and swallowing sound through the ear canal as well 
as externally through the air. Placing such microphones has 
similar cosmetic issues and therefore its suitability for 
prolonged usage is questionable. Respiratory Inductance 
Plethysmography (RIP) is used for swallow detection by 
measuring the airflow [8] in trachea. The RIP belts used for 
this method are often too involving to be useable for 
prolonged use in daily life settings.  

We present a wearable sensor system for swallow 
monitoring in this paper. The system works based on the key 
observation that during swallowing, because the trachea is 
blocked, a person is not able to breathe, causing a temporary 
apnea. Using a wearable chest-belt, we detect swallows by 
the way of detecting apneas extracted from breathing signal 
captured by the chest-belt. Since the belt can be worn inside, 
outside, or between garments (it does not need skin contact), 
it has the potential for prolonged comfortable daily usage 
without raising any cosmetic issues. After the swallow 
sequence is recorded, swallow pattern analysis can 
potentially be used for identifying non-intake swallows (or 
empty swallows), solid intake swallows, and drinking 
swallows.    

In our previous work [9], we reported a similar system 
with algorithms designed specifically for liquid intake 
monitoring. In this paper, we present hardware, algorithm, 
and software extension of the same concept for monitoring 
both liquid and solid intakes.  

II. SYSTEM COMPONENTS 

As shown in Fig. 1, an embedded wearable sensor system 
is worn on the chest for collecting the breathing signal and 
transmitting it to a smart phone through Bluetooth. The 
embedded belt system contains: 1) a piezo-respiratory belt for 
converting the changes of tension during breathing to a 
voltage signal, 2) an amplifier and signal shaping circuit for 
formatting the raw voltage signal to a format compatible for 
an ADC chip, 3) a processor and radio subsystem (TI 
EZ430-RF256x), and 4) one 3.7V 300mAH polymer 
rechargeable battery. The entire package weighs 
approximately 40 grams. The 300mAh polymer battery is 
able to support the system for more than 30 hours of 
continuous operation on a single charge. After the signal is 
received by the smart phone, it is stored on an SD card 
attached to the phone. The advantage of using an embedded 
wireless link is that the developed swallow sensor can be 
networked with other physiological [10] and physical activity 
sensors [3] to develop a networked sensing/detection system 
to provide a complete instrumentation package for obesity 
management in the future.  
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Fig. 1: Wearable wireless food intake monitoring system 

III. APNEA ANALYSIS FOR SWALLOW DETECTION 

Fig. 2 demonstrates a number of experimentally obtained 
breathing signal segments from different human subjects.  
The ADC readings in the figure are directly proportional to 
the elongation of the piezo-electric sensing belt. The rising 
edges correspond to inhalations and the falling edges 
correspond to exhalations. As shown in the figure, a breathing 
cycle can be either normal (i.e. Normal Breathing Cycle or 
NBC) or elongated due to swallow-triggered apnea. A cycle 
that is elongated due to an apnea at the beginning of an exhale 
(see Fig. 2:a for subject-1, session-1) is termed as Breathing 
Cycle with Exhale Swallow (BC-ES). For a second subject, 
Fig. 2:b shows swallows (i.e. apnea) during the inhale process 
which are termed as Breathing Cycles with Inhale Swallow 
(BC-IS). 

  

 

Fig. 2: Example of respiratory signal with embedded swallow signatures 

Fig. 3 shows example breathing signals with solid and liquid 
swallows. As can be seen, for solid swallows, breathings are 

deeper and contain more temporal fluctuations. The key 
objective is to be able to classify three types of breathing 
cycles, namely, NBC, BC-ES, and BC-IS, and to detect if the 
swallow is a solid or liquid one. The challenges stem from the 
fact that there is significant variability in breathing 
waveforms across different: 1) subjects, 2) measurement 
instances for the same subject, and most importantly, 3) the 
location and duration of the apnea with respect to its 
breathing cycle. Among other things, this depends a great 
deal on the swallowing habits and the texture of the material 
that is being swallowed.  

 

Fig. 3: Example breathing signals for solid and liquid swallows 

IV. PROCESSING FOR SWALLOW DETECTION 

      Fig. 4 depicts the logic for classifying breathing cycles 
towards swallow detection. The raw data sampled by ADC at 
100Hz is first fed into a low-pass filter for removing 
quantization noise caused by the A-to-D conversion process. 
Because the power spectrum of breathing signal is mainly 
below 2.5Hz, 100Hz is obviously sufficient. The second step 
is to run the filtered data stream through a peak and valley 
detection module in order to extract the individual breathing 
cycles. The next module is used for normalizing the extracted 
cycles in both time and amplitude dimensions. Each breathing 
cycle is normalized to be between 0 and 100 vertically, and 
interpolated to 128 sample points. Considering the average 
length of a breathing cycle of 3.77 seconds in our 
experiments, the normalized sampling rate after interpolation 
is mapped to 34Hz. The objective of normalization is to make 
sure that although different cycles may have different time 
and amplitude ranges (person-to-person or cycle-to-cycle for 
the same person), they can be effectively identified based on 
the apnea caused by swallowing.  
   The normalized breathing cycle waveforms are fed into a 
feature extraction module which extracts time domain or 
frequency domain features.  These extracted features are then 
selected based on their discriminative power, and fed into a 
classifier for training or testing purposes. Number of features 
would affect the complexity and performance of 
classification. A classifier would be simple but with inferior 
performance if very few features are selected. Classifiers with 
a large number of features, however, are complex but do not 
necessarily provide superior performance [11].  
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Fig. 4: Logic for swallow signature detection 

       A hierarchical classification scheme is used for solid and 
liquid swallow detection. The first classifier detects if a 
breathing cycle is an NBC or a breathing cycle with swallow. 
The second classifier detects if a swallow is a solid and liquid 
when the output of the first classifier is a swallow. 

V. PERFORMANCE EVALUATION 

   Experiments using the system in Fig. 1 were carried out for 

swallow detection with three subjects, including 2 male and 1 

female, and we are working on more subjects. 

A. Experimental Methods 

   Each subject performed three liquid swallow sessions and 

three solid swallow sessions, each session lasting for five 

minutes. Each subject was asked to wear the instrumented 

chest-belt and sit still throughout the experiment. During the 

liquid swallow session, the subject drank water from a flask 

with a swallow instruction given once in every 20 seconds. 20 

ml of water was added to the flask for each swallow, ensuring 

the swallow volume to be 20ml. Each liquid swallow session 

resulted in approximately 80 Normal Breathing Cycle (NBC) 

and approximately 15 breathing cycles with swallows (both 

Breathing Cycle with Exhale Swallow (BC-ES) and 

Breathing Cycle with Inhale Swallow (BC-IS)). During the 

solid swallow sessions, the subject was asked to eat 6 grams 

of crackers each time at their comfortable rate, and noted the 

time when he or she swallowed. Considering that the cracker 

would be chewed and mixed with saliva, the formed bolus 

was roughly the same volume as 20 ml of water swallows. 

The resulting swallow signals are collected over the 

Bluetooth channel on a smart phone as shown in Fig. 1.  

B. Breathing Cycle Statistics 

Table 1 summarizes the duration of different types of 

breathing cycles. In addition to the spread of the cycle 

durations across subjects, it should be observed that the 

cycles with swallows (i.e., both solid and liquid) are 

consistently longer than the normal breathing cycles. This is 

mainly due to the short apnea introduced by the swallow 

events. Moreover, it can also be observed that there is 

significant difference in the lengths of solid swallow and 

liquid swallow, which is mainly because of the different 

texture of the bolus in solid swallow and liquid swallow.     

  
NBC 

(Seconds) 

Solid 

swallow 

(Seconds) 

Liquid 

swallow 

(Seconds) 

Subject 

1 

Maximum 5.61 6.81 7.56 

Minimum 2.36 2.91 3.36 

Average 3.24 4.86 4.79 

Subject 

2 

Maximum 5.88 9 5.56 

Minimum 1.64 3.54 3.57 

Average 3.44 6.27 4.27 

Subject 

3 

Maximum 4.51 9.33 6.64 

Minimum 1.93 4.26 2 

Average 3.05 6.22 4.27 

Table 1: Durations of different breathing cycle types 

VI. DETECTION USING MACHINE LEARNING  

A. Features extraction and selection 

As analyzed in our previous work [9], both time domain 
and frequency domain features can perform well in detecting 
liquid swallows. The discriminative power of those feature 
types, however, can be different. As shown in Fig. 5:a, for 
time domain features, sample points with indices near 16 and 
90 are more important than other sample points in 
classification. As shown in Fig. 5:b, for frequency domain 
features, lower frequency components have more 
discriminative power. It was also found that the 
discriminative power distribution of frequency domain 
features are more consistent across subjects, which is why the 
time-domain features are used in this paper.     

 

Fig. 5: Discriminative property of time and frequency domain features 

   The second set of classification features is derived from the 
first derivative of the breathing signal. As shown in Section 
III, it was found that the solid swallows generally create more 
fluctuations in the breathing signal compared to the liquid 
swallows. To capture such fluctuations, an additional 
classification feature was derived from the first derivatives of 
the breathing signal. More specifically, the number of ±10 
crossings is used as the feature, which is defined as the 
number of points in the breathing signal at which the first 
derivative of the signal is exactly +10 or -10. Compared to the 
number of zero crossings, the number of ±10 crossings not 
only captures the fluctuations observed in solid swallows, but 
also helps detecting the swallows in the first place. Fig. 6 
shows an example of the benefits of ±10 crossings of first 
derivative in detecting swallows. In this case, the number of 
zero crossings of first derivative is 1, which is the same as 
NBCs and is not sufficient in detecting the swallow, but the 
number of -10 crossings of the first derivative is 2 instead of 1 
in case of NBC, which helps to detect the swallow. 
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Fig. 6: Benefits of ±10 crossings as a classification feature 

 

The third set of features is derived from various length 
distributions of the breathing cycles. Table 2 summarizes all 
the used features used in this paper. 

 

 Features 

Frequency 
domain 
features 

1st order Fourier transform coefficient 
2nd order Fourier transform coefficient 
3rd  order Fourier transform coefficient 
4th order Fourier transform coefficient 
5th order Fourier transform coefficient 

Features 
from 

waveform 

Number of +10 crossings in first derivative 
Number of -10 crossings in first derivative  

Breathing cycle length 
Inhalation length 
Exhalation length Inhalation depth 
Exhalation depth 

Table 2: Features selected for classification 

B.  Swallow detection 

All the above features are fed into the hierarchical 

classifier for solid and liquid swallow detection. In order to 

prove the generalizability, we adopt the leave-one-out 

method, in which case, data from all subjects are used for 

training except the one whose data is used for testing. 
 

  True positive rate 
(%) 

False positive rate 
(%) 

Subject 1 

SVM 82.9 1.6 

J48 76 2.4 

Naïve Bayes 100 1.2 

Subject 2 

SVM 84 0 

J48 88.6 4.9 

Naïve Bayes 97.1 4.1 

Subject 3 

SVM 86.7 0 

J48 83.3 8.6 

Naïve Bayes 93.3 8.6 

Table 3: Performance of the first stage of the hierarchical classifier 

   Table 3 and Table 4 report the performance of the 
hierarchical classifier using the leave-one-out method. As can 
be seen, SVM [11] provides the best performance among all 
the applied methods for both the classifier stages. For the first 
stage, for all subjects the true positive rates remained higher 
than 82.9% and false positive rates lower than 1.6%. The 
performance of the second stage classifier has accuracy 
ranging from 88% to 73.33% when SVM is applied. Testing 
the system with more subjects is under way. 

 

  Accuracy (%) 

Subject 1 

SVM 82.86 

J48 80 

Naïve Bayes 76 

Subject 2 

SVM 88 

J48 80 

Naïve Bayes 68.6 

Subject 3 

SVM 73.33 

J48 70 

Naïve Bayes 70 

Table 4: Performance of the second stage of the hierarchical classifier 

VII. CONCLUSION AND ONGOING WORK 

This paper reported the design, system structure, and 
performance for a wireless and wearable food and drink 
intake monitoring system. The paper presented machine 
learning based swallow detection method using hierarchical 
classification scheme. Ongoing work on this topic includes: 
a) large scale validation of the system and concept with more 
subjects, b) developing detection and filtering mechanisms 
for artifacts introduced by movement and speech, c) 
implementing a real-time swallow detection architecture, and 
d) combining both time and frequency domain features, and 
including more features for better performance.  
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