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Abstract— We propose a novel multiresolution framework for
ultrasound image segmentation in this paper. The framework
exploits both local intensity and local phase information to
tackle the degradations of ultrasound images. First, multireso-
lution scheme is adopted to build a Gaussian pyramid for each
speckled image. Speckle noise is gradually smoothed out at
higher levels of the pyramid. Then local intensity-driven active
contours are employed to locate the coarse contour of the target
from the coarsest image, followed by local phase-based geodesic
active contours to further refine the contour in finer images.
Compared with traditional gradient-based methods, phase-
based methods are more suitable for ultrasound images because
they are invariant to variations in image contrast. Experimental
results on left ventricle segmentation from echocardiographic
images demonstrate the advantages of the proposed model.

I. INTRODUCTION

Ultrasound imaging has become one of the most widely
used diagnostic and therapeutic tools in modern medical
applications, especially for image-guided interventions and
therapies. Compared with other imaging modalities, such as
CT and MRI, it is more portable and versatile, and does
not produce any harmful radiation. In order to improve the
performance of diagnosis and treatment, reliable and auto-
matic or semi-automatic segmentation methods are required
to detect interested objects in ultrasound images. However,
accurate segmentation of these images is still a challenging
task due to various ultrasound artifacts, including intensity
inhomogeneity, low contrast and high speckle noise.

A lot of efforts have be dedicated to enhancing ultrasound
image quality and improving segmentation accuracy [1]. In
early investigations, statistical analysis of speckle is stud-
ied [2] and several filtering techniques for speckle reduc-
tion are presented [3][4]. To handle intensity distortion in
ultrasound images, Xiao et al. [5] proposed an expectation-
maximization method that simultaneously estimates intensity
distortion and segments the image into different regions.
Shape knowledge is also of great interest in many applica-
tions. For example, Johan et al. [6] applied active appearance
motion model (AAMM) to detect endocardial contour over
the full heart cycle. However, inclusion of a priori shape
information may lead to erroneous segmentation result if the
target is deformed due to pathological changes.
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Active contour models (ACM) [7] have been widely
investigated and can be broadly categorized into two classes:
edge-based models and region-based models. Both the two
models have been incorporated into level set framework for
ultrasound image segmentation [8][9]. However, most of
these models only utilize intensity or gradient information
to evolve the contour, which is usually insufficient for low
contrast ultrasound images. On the other hand, phase-based
methods have been shown to perform well in segmenting
ultrasound images. Mulet-Parada and Noble [10] first suc-
cessfully used local phase information for feature detection
on echocardiogram sequences, which is later extended by
Rajpoot et al. [11] by computing local phase from the
monogenic signal [12]. Recently, Belaid et al. [13] employed
both local phase and orientation to capture the boundaries
of left ventricle. However, previous phase-based methods
mainly rely on edge information and are usually sensitive
to initial contour because of limited capture range.

Multiresolution scheme has been demonstrated to be an
efficient technique to segment ultrasound images [14]. It
relies on the conversion of speckled images with Rayleigh
statistics [8] to subsampled images with Gaussian statistics
by building a Gaussian pyramid. Due to Gaussian smoothing
and subsampling, the intensity distribution of image pixels
at higher pyramid levels can be approximated as Gaussian
statistics, which is far more mathematically tractable and
separable than Rayleigh statistics that actually characterizes
ultrasound images. In [15], Lin et al. presented a multiscale
framework that combines region and edge information to
segment echocardiographic image. However, this framework
is based on C-V model [16] that assumes the regions to be
segmented are homogeneous, and thus has limited success
for images with intensity inhomogeneity.

This paper presents a novel multiresolution framework
for ultrasound image segmentation. First, multiresolution
scheme is adopted to build a Gaussian pyramid for each
speckled image. The multiresolution scheme gradually
smooths out speckle noise as well as reduces the overall
computation by transferring the computing to higher pyra-
mid levels. Then local intensity-driven active contours are
employed to locate the coarse contour of the target from
the coarsest image, followed by local phase-based geodesic
active contours (GAC) to further evolve the contour in
finer images. This modified GAC model works well for
ultrasound images with low contrast and weak boundaries
as phase-based methods are theoretically intensity invariant.
We evaluate the performance of the proposed model on left
ventricle segmentation from echocardiographic images.
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Fig. 1: Overview of the proposed model. A Gaussian pyramid is first constructed from the input image. Then the contour
of left ventricle is captured progressively from high to low levels of the pyramid.

II. METHODS

Pipeline of the proposed model is shown in Fig. 1. A
Gaussian pyramid is first constructed from the input image.
Then the segmentation is performed in a coarse-to-fine man-
ner where the result from a high level will be passed to next
lower level as initial contour. Specifically, local intensity-
driven active contours are employed to capture the coarse
contour of left ventricle from the coarsest image. After that,
local phase-based geodesic active contours are used to further
deform the contour in finer images. The final contour is
obtained after all the pyramid levels are processed.

A. Local Intensity-driven Active Contours

Let us consider an image I defined in domain Ω ⊂ ℜ2,
image segmentation is to find a contour C that partitions Ω
into n different regions Ωi, such that Ω = ∪ni=1Ωi,Ωi∩Ωj =
∅,∀i ∕= j. We denote Pi =

∏
Ωi
p(I(y)) to be the probability

of random field Ωi, where p(I(y)) is the probability density
function (PDF) of gray level I(y) at pixel y. Assuming the
intensity of image pixels is independently distributed, parti-
tioning Ω corresponds to maximizing the likelihood function∏n
i=1 Pi. By taking the negative logarithm operation, the

maximization is turned to a minimization problem as
n∑
i=1

−log(Pi) =

n∑
i=1

∫
Ωi

− log(p(I(y)))dy. (1)

In our multiresilution framework, the intensity distribution
in the coarsest image can be approximated as Gaussian
statistics as explained previously. Here we adopt a Gaussian
kernel with spatially varying mean and variance to model
the intensity distribution within the neighborhood of pixel
x as px(I(y)) = 1√

2��(x)
exp

(
− (�(x)−I(y))2

2�(x)2

)
, where �(x)

and �(x) are local intensity mean and variance, respectively.
Moreover, as local energy models [17][18] usually perform
better than global energy models [16] for inhomogeneous
images, we incorporate another kernel function K�(d) =

1√
2��

exp
(
− ∣d∣

2

2�2

)
into (1) to achieve this local property,

leading to the following energy function for each pixel x

Ex(I, C) =

n∑
i=1

∫
Ωi

−K�(x− y) log(p(I(y)))dy, (2)

which will be integrated over Ω to segment the whole image.

Without loss of generality, we assume the image to be
partitioned into foreground and background for simplicity.
These two regions can be represented as outside and inside
of the zero level set of a level set function �, respectively.
By introducing the Heaviside function H , we obtain the
following objective function to be minimized

F (I, �) =

2∑
i=1

∫ ∫
−K�(x−y) log(p(I(y)))Mi(�(y))dydx

+�

∫
1

2
(∣∇�(x)∣ − 1)2dx+ �

∫
∣∇H(�(x))∣dx, (3)

where M1(�) = H(�), M2(�) = 1−H(�) and the subscript
Ω is omitted for simplification. The second term of (3) is a
regularization term [19] used to penalize the deviation of the
level set function from signed distance function (SDF) and
the third term corresponds to the length of the contour [16].
Finally, by calculus of variations, the gradient descent flow
that minimizes (3) is derived as

∂�

∂t
= �(�)(e1 − e2) + �

(
∇2�− div

(
∇�
∣∇�∣

))
+ ��(�)div

(
∇�
∣∇�∣

)
, (4)

where

ei(x) =

∫
−K�(y−x)

[
log(�i(y)) +

(�i(y)− I(x))2

2�i(y)2

]
dy

(5)
and � is the Dirac function that is approximated by a smooth
function ��(x) = 1

�
�

�2+x2 in our experiments.

B. Local phase-based Geodesic Active Contours

Geodesic active contours (GAC) are originally proposed
in [20] and the evolution equation is given by

∂�

∂t
= g∣∇�∣div

(
∇�
∣∇�∣

)
+∇g ⋅ ∇�+ �g∣∇�∣, (6)

which relies on the gradient-based edge detector g to stop
the contour at object boundaries. However, this gradient-
based edge detector may produce high values in low contrast
regions, and the contour will pass through weak boundaries.
We solve this problem by exploiting local phase information
from the monogenic signal, and design a phase-based edge
detector to handle low contrast ultrasound images.
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1) Monogenic Signal: To perform local analysis of 1D
signal, one usually needs to construct a complex analytical
signal, which is formed by taking the original signal f and
its Hilbert transform fH as real part and imaginary part,
respectively. However, the Hilbert transform is only restricted
for 1D function, and 2D extension of the above local analysis
is usually performed by first applying 1D analysis over
several orientations and then combining these 1D analyses
together to provide a single measure. Recently, Felsberg and
Sommer [12] proposed a 2D isotropic analytic signal, called
monogenic signal. This 2D analytic signal preserves the core
property of 1D analytic signal that decomposes a signal into
local phase and local amplitude, and is defined by combining
the original 2D signal with its Riesz transform fR to form a
3D vector fM = (f, fR) = (f, ℎ1 ∗ f, ℎ2 ∗ f), where ℎ1 and
ℎ2 are the Riesz filters [21].

In practical applications, local properties are estimated
via a bank of quadrature filters tuned to various spatial
frequencies because real images usually consist of a wide
range of frequencies. Hence a set of bandpass filters g are
combined with the monogenic signal, which then can be
represented as a scalar-valued even and a vector-valued odd
filtered responses, i.e., even = g∗f and odd = (g∗ℎ1∗f, g∗
ℎ2∗f), respectively. Here the Gaussian derivative kernels are
selected as bandpass filters for feature detection. In frequency
domain, a 2D isotropic bandpass Gaussian derivative kernel
is defined as

G(!) = nc∣!∣a exp(−s2∣!∣2), (7)

where ! = (u, v). Please refer to [22] for other parameters.
2) Phase-based Edge Detector: Phase congruency

model [23] postulates that features are perceived at points,
where the Fourier components are maximally in phase.
Various feature types give rise to points of high phase
congruency, including step edges, line and roof edges, and
Mach bands. Step edge detection corresponds to finding
points that have phase responses near to 0 or �. In [24],
Kovesi proposed to use feature asymmetry over a number of
scales to detect step edge features. Inspiring from this, we
define the following multiscale feature asymmetry measure

MSFA =

∑
n⌊∣oddn∣ − ∣evenn∣ − Tn⌋∑
n

√
odd2

n + even2
n + "

, (8)

where " is a small constant, Ts is the noise threshold and
⌊⋅⌋ denotes zeroing of negative values. MSFA takes values
between 0 (smooth regions) and 1 (boundaries).

Different from previous work, the above MSFA measure
is computed from the monogenic signal and thus can be
applied to perform 2D local analysis directly. This property
greatly simplifies the computation of local analysis for 2D
signal. Furthermore, multiscale approach offers a better con-
trol on feature detection quality. Finally, the MSFA measure
is used to design a new phase-based edge detector, which
will be incorporated into GAC model to replace the previous
gradient-based edge detector, as following

g =
1

1 +MSFA�
, (9)

TABLE I: The mean and standard deviation (SD) of DSC
measurement of the four computerized segmentation meth-
ods in ten echocardiographic images.

Methods GAC model Lin’s Model Wang’s model our approach
Mean (%) 87.58 90.56 88.34 95.45
SD (%) 4.82 3.13 4.48 1.81

where � is the scale parameter. This new edge detector
responds well to low contrast images as the MSFA measure
is independent of image intensity.

III. EXPERIMENTS

We validate the performance of the proposed model with
ten echocardiographic images. During the experiments, we
use the following parameter setting. At the highest level of
the pyramid, the parameters in (4) are set as � = 1.0, � =
0.0001 × 255 × 255. At lower pyramid levels, we use �
= -0.8, � = 0.3, and the Gaussian derivative kernels are set
with wavelengths = (15, 20, 25) and bandwidth = 2 octaves.
Lastly, the level set function � is initialized as a binary
function, taking constant values 1 and -1 in regions outside
and inside of the zero level set, respectively.

Our approach is compared with three classical com-
puterized segmentation methods: GAC model [20], Lin’s
model [15] and Wang’s model [18]. For these three methods,
we use the parameters that produce the best results. Two of
the ten echocardiographic images are shown in Fig. 2. Orig-
inal images with high speckle noise and low image contrast
are presented in the first column and manual segmentation
of the left ventricle is also displayed in the second column.
Results of GAC model are shown in the third column. As
can be seen, the contour is likely to pass through weak
boundaries due to the use of gradient-based edge detector.
Lin’s model shares the same weakness as GAC model (see
the fourth column). Moreover, because Lin’s model relies on
C-V model at the highest pyramid level, it has limited ability
to handle inhomogeneous images. Results of Wang’s model
are presented in the fifth column. This method also cannot
accurately segment left ventricle as it models the intensity
distribution of ultrasound images with Gaussian statistics. In
contrast, our approach precisely captures the contour of left
ventricle by combining Wang’s model and GAC model into
a multiresolution framework, as shown in the sixth column.

Finally, TABLE I quantitatively compares the four com-
puterized segmentation methods using the Dice similarity
coefficient [25], which is defined as

DSC = 2× ∣Sm ∩ Sc∣
∣Sm∣+ ∣Sc∣

, (10)

where Sm and Sc represent the pixel sets by manual
and computerized segmentation, respectively. The closer the
DSC values are to 1, the higher the accuracy is. As shown in
the table, our approach achieves the highest mean value and
lowest SD value, indicating the superiority of the proposed
model. This high accuracy and robustness also imply that
our approach can be adopted to reduce the dependency of
human experts in clinical applications.
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Fig. 2: Comparison of left ventricle segmentation from echocardiographic images. (First column) Original images overlaid
with initial contour. (Second column) Manual segmentation. (Third column) Results of GAC model. (Fourth column) Results
of Lin’s model. (Fifth column) Results of Wang’s model. (Sixth column) Results of our approach.

IV. CONCLUSIONS

In this paper, a novel multiresolution framework for ul-
trasound image segmentation is presented. Speckle noise is
gradually smoothed out due to the multiresolution scheme.
Furthermore, both local intensity and local phase informa-
tion are exploited to deal with various ultrasound artifacts.
Experimental results on left ventricle segmentation from
echocardiographic images demonstrate the high accuracy and
robustness of our approach. In future work, more experiments
will be conducted to further evaluate the reliability of the
proposed model.
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