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Abstract— Parallel imaging methods allow to increase the
acquisition rate via subsampled acquisitions of the k-space.
SENSE is one of the most popular reconstruction methods
proposed in order to suppress the artifacts created by this
subsampling. However, the SENSE reconstruction process yields
to a variance of noise value which is dependent on the posi-
tion within the image. Hence, the traditional noise estimation
methods based on a single noise level for the whole image fail.
Accordingly, we propose a novel method to recover the complete
spatial pattern of the variance of noise in SENSE reconstructed
images up from the sensitivity maps of each receiver coil. Our
method fits applications in statistical image processing tasks
such as image denoising.

Index Terms— Noise estimation, parallel imaging, SENSE,
Magnetic Resonance

I. INTRODUCTION

Magnetic Resonance (MR) data is known to be affected by

several sources of quality deterioration, due to limitations in

the hardware, scanning times, movement of patients, or even

the motion of molecules in the scanning subject. One source

of degradation that affects most of the acquisitions is thermal

noise. The presence of noise over the acquired MR signal is a

problem that affects not only the visual quality of the images,

but also may interfere with further processing techniques

such as registration or tensor estimation in Diffusion Tensor

MRI. Emerging techniques that demand large amounts of

data, such as High Angular Resolution Diffusion Imaging

(HARDI), in order to reduce the acquisition time, also reduce

the temporal averaging; as a consequence, the noise power

is increased proportionally to the square root of the speedup.

One of the most direct approaches to cope with acquisition

noise in MRI (but not the only one) is signal estimation

via noise removal. Traditionally, noise filtering techniques

in different fields have been based on a well-defined prior

statistical model of data, usually a Gaussian model. Noise

models in MRI have allowed the natural extension of many

well known techniques to cope with features specific of

MRI. Many examples can be found in the literature, such as

the Conventional Approach (CA) [1], Maximum Likelihood

(ML), linear estimators [2], or adapted non-local mean

(NLM) schemes [3], [4]. All of these methods explicitly

need an estimation of the variance of noise. They usually

assume a single coil configuration in which noise is modeled

as a complex Gaussian process and therefore the magnitude

signal is the Rician distributed envelope. In any case, the

noise parameters are usually considered constant through the
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image, i.e., the noise is stationary. The CA method and the

NLM, for instance, estimate the signal by simply subtracting

the bias term from the expected value of the square of the

magnitude M(x):

Î(x) =
√
E{M2(x)} − 2σ2n, (1)

where σ2n is the variance of noise that must be known or

estimated.

Although the stationary Rician model is widely used in

literature, the fact is that nowadays, due to time restric-

tions, most acquisitions are usually accelerated by using

Parallel MRI (pMRI) reconstruction techniques, which allow

to increase the acquisition rate via subsampled acquisitions

of the k-space. Many reconstruction methods have been

proposed in order to suppress the aliasing and underlying

artifacts created by this subsampling, being SENSE [5]

dominant among them. From a statistical point of view, such

a reconstruction will affect the stationarity of the noise in

the reconstructed data, i.e. the spatial distribution of the

noise across the image. As a result, if SENSE is used,

the magnitude signal may be considered Rician [6], [7] but

the value of the statistical parameters, and in particular the

variance of noise σ2n, will vary for different image locations,

i.e. it becomes x-dependent.

Noise estimators proposed in literature (see for instance

[2], [8]) are based on the assumption of a single σ2n value

for all the pixels in the image. Accordingly, those methods do

not apply when dealing with pMRI. Noise estimators must

therefore be reformulated in order to cope with these new

image modalities.

In this paper we propose a method to estimate the spatially

distributed variance of noise σ2n from the magnitude signal

when SENSE is used as pMRI technique. The method is

based on the study of the distribution of noise in SENSE.

II. STATISTICAL NOISE MODEL IN SENSE

RECONSTRUCTED IMAGES

Prior to the definition of the estimators, the statistical noise

model in SENSE must be properly defined. Many studies

have been made about this topic from a SNR or a g-factor

(noise amplification) point of view [5], [7], [9]. Since this

paper is focused on the σ2n value estimation rather than a

SNR level, an equivalent reformulation must be done, more

coherent with the signal and noise analysis usually assumed

for noise estimation.

In multiple coil scanners, the image received in coil l-th,

Sl(x, y), can be seen as an original image S0(x, y) weighted

by the sensitivity of that coil:

Sl(x, y) = Cl(x, y)S0(x, y), l = 1, · · · , L (2)
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An accelerated pMRI acquisition with a factor r will reduce

the matrix size of the image at every coil. The signal in one

pixel at location (x, y) of l-th coil can be now written as [10]:

Sl(x, y) = Cl(x, y1)S0(x, y1)+· · ·+Cl(x, yr)S0(x, yr) (3)

In what follows, let us call SSl (x, y) to the subsampled signal

at coil l-th and SR(x, y) to the final reconstructed image.

Note that the latter can be seen as an estimator of the original

image SR(x, y) = Ŝ0(x, y) that can be obtained from eq. (3).

For instance, for r = 2 for pixel (x, y), SR(x, y) is obtained

as [
SR1
SR2

]
=
[
W1 W2

]
×
[
SS1 · · · SSL

]
. (4)

In matrix form for each pixel and arbitrary r

SRi =Wi × SS i = 1, · · · , r. (5)

with W = [W1, · · ·Wr] a reconstruction matrix created

from the sensitivity maps at each coil. These maps, C =
[C1, · · · ,CL] are estimated through calibration right before

each acquisition session. Once they are known, the matrix

W reduces to a least-squares solver for the overdetermined

problem C(x, y)× SR(x, y) ≃ SS(x, y) [5], [10]:

W(x, y) = (C∗(x, y)C(x, y))−1C∗(x, y). (6)

The correlation between coils may be incorporated in the re-

construction as a pre-whitening matrix for the measurements,

and W(x, y) becomes then a weighted least squares solver

with correlation matrix Σ:

W(x, y) = (C∗(x, y)Σ−1C(x, y))−1C∗(x, y)Σ−1.

The SNR of the fully sampled image and the image recon-

structed with SENSE are related by the so-called g-factor,

g [9], [10]:

SNRSENSE =
SNRfull√
r · g (7)

However, in our problem we are more interested on the

actual noise model underlying the SENSE reconstruction and

on the final variance of noise. The final signal SRi is obtained

as a linear combination of SSl , where the noise is Gaussian

distributed. Thus, the resulting signal is also Gaussian, with

variance:

σ2i =W
∗
iΣWi. (8)

Since Wi is position dependent, i.e. Wi = Wi(x, y), so

will be the variance of noise, σ2i (x, y). For further reference,

when the whole image is taken into account, let us denote

the variance of noise for each pixel in the reconstructed data

by σ2
R
(x).

Note now that all the lines SRi reconstructed from the same

data SSl will be strongly correlated, since they are basically

different linear combinations of the same Gaussian variables.

All in all, noise in the final reconstructed signal SR(x, y)
will follow a complex Gaussian distribution. If the magnitude

is considered, i.e.M(x, y) = |SR(x, y)|, the final magnitude

image will follow a Rician distribution [7], just like single-

coil systems.

To sum up: (1) Subsampled multi coil MR data recon-

structed with Cartesian SENSE follow a Rician distribution

at each point of the image; (2) The resulting distribution is

non-stationary. This means that the variance of noise will

vary from point to point across the image; (3) The final

value of the variance of noise at each point will only depend

on the covariance matrix of the original data and on the

sensitivity map, and not on the data themselves; (4) Each

pixel in the final image will be strongly correlated with all

those pixels reconstructed from the same original data. Each

pixel is correlated with r − 1 other pixels.

III. NOISE ESTIMATION IN SENSE

In the background of a SENSE MR image, where the

SNR is zero due to the lack of water-proton density in the

air, the Rician PDF simplifies to a (non-stationary) Rayleigh

distribution, whose second order moment is defined as

E{M2(x)} = 2 · σ2R(x). (9)

Since σ2R(x) is x-dependent, E{M2(x)} will also show a

different value for each x position. Let us assume that each

coil in the x-space is initially corrupted with uncorrelated

Gaussian noise with the same variance σ2n and there is a

correlation between coils ρ2 so that matrix Σ becomes

Σ = σ2n




1 ρ2 · · · ρ2
ρ2 1 · · · ρ2
...

...
. . .

...

ρ2 ρ2 · · · 1


 = σ2n

(
I+ ρ2[1− I]

)
.

with I the L × L identity matrix and 1 a L × L matrix of

1’s. For each x value, we define the global map

GWi
=W∗

i

(
I+ ρ2[1− I]

)
Wi, i = 1, · · · , r

Global map GW (x) can be easily infered from the GWi

values. Note that GW (x) is strongly related to the g-factor

[9]. Eq. (9) then becomes

E{M2(x)} = 2 σ2n GW (x) (10)

and

σ2n =
E{M2(x)}
2 GW (x)

(11)

By using this regularization, we can assure a single σ2n value

for all the points in the image. Following the noise estimation

philosophy in [2], [8], we can now define a noise estimator

based on the local sample estimation of the second order

moment:

〈M2(x)〉x =
1

|η(x)|
∑

p∈η(x)

M2(p),

with η(x) a neighborhood centered in x. 〈M2(x)〉x is

known to follow a Gamma distribution [8] whose mode is

2σ2n(|η(x)| − 1)/|η(x)|. Then

mode

{ 〈M2
L〉x

GW (x)

}
= 2σ2n

|η(x)| − 1

|η(x)| ≈ 2σ2n
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Fig. 1. Sensitivity Maps used for the experiments. Top: synthetic sensitivity
map. Bottom: Map estimated from real acquisition.

Fig. 2. Maps of σ
2

R
(x) in the final image: (a-c-e): Theoretical values.

(b-d-f): Estimated from samples. (a-b) Synthetic Sensitivity Map with no
correlation. (c-d) Synthetic Sensitivity Map with correlation between coils.
(e-f) Real sensitivity map with correlation between coils (log scale).

when |η(x)| >> 1. The estimator is then defined as

σ̂2n =
1

2
mode

{ 〈M2
L(x)〉x
GW (x)

}
(12)

and consequently the noise in each pixel is estimated as

σ̂2
R
(x) =

1

2
mode

{ 〈M2
L(x)〉x
GW (x)

}
GW (x) (13)

This estimator is only valid over the background pixels.

However, as shown in [2], [8], no segmentation of these

pixels is needed: the use of the mode operator allow us to

work with the whole image. On the other hand, to carry

out the estimation, the sensitivity map of each coil and the

correlation between coils must be known beforehand. These

parameters are needed for the SENSE encoding, and thus,

they can be easily obtained.

IV. EXPERIMENTS AND RESULTS

We will first test the variation of parameter σ2
R
(x) across

the image in SENSE. To that end, we work with two

sensitivity maps belonging to 8-coil systems as shown in

Fig. 1: one synthetic sensitivity map (top) and a real map

(bottom), estimated from a T1 acquisition done in a GE Signa

1.5T EXCITE, FSE pulse sequence, 8 coils, TR=500msec,

TE=13.8msec, 256 × 256 and FOV: 20cm×20cm. For the

sake of simplicity we assume a normalized variance at each

coil σ2l = 1 since it will not affect the experiment. We

will simulate two different configurations, first, assuming

that there is no initial correlation between coils, and second,

assuming a correlation coefficient of ρ2 = 0.1. From the data,

and using the theoretical expression in eq. (8) we calculate

the variance of noise for each pixel in the final image. In

order to test the theoretical distributions, 5000 samples of

8 complex 256× 256 Gaussian images with zero mean and

covariance matrix Σ are generated. The k-space of the data

is subsampled by a 2x factor and reconstructed using SENSE

and the synthetic sensitivity field. We estimate the variance

of noise in each point using the second order moment of the

Rayleigh distribution [8]:

σ2R(x) =
1

2
E{M2(x)}.

We estimate the E{M2(x)} along the 5000 samples.

Visual results are depicted in Fig 2. For the synthetic

maps, when no correlations are considered, the final variance

of noise will not depend on the position x. Therefore, in

this particular case σ2
R
(x) = σ2

R
. The estimated values in

Fig 2-(b) show a noise pattern that slightly varies around

the real value (note the small range of variation). In this

very particular case, the noise can be considered to be spa-

tially stationary, and the final image (leaving the correlation

between pixels aside) is equivalent to one obtained from a

single-coil scanner.

When correlations are taken into account, even using the

same synthetic sensitivity map, results differ. In Fig. 2-(c),

the theoretical value shows that the standard deviation of

noise of the reconstructed data is not the same for every

pixel, i.e., the noise is no longer spatial-stationary. The center

of the image shows a larger value that decreases going north

and south. So, in this more realistic case, the σ2
R
(x) will

depend on x, which can have serious implications for future

processing, such as model based filtering techniques. The

estimated value in Fig. 2-(d) shows exactly the same non-

homogeneous pattern across the image. In the last exper-

iment, Fig. 2-(e) and Fig. 2-(f), a real sensitivity map is

used, and correlation between coils is also assumed. Again,

the noise is non-stationary. To increase the dynamic range of

the images, the logarithm has been used to show the data.

Secondly, we will validate the noise estimation capability

of the proposed method by carrying out an experiment with

a 2D synthetic slice from a BrainWeb MR volume [11], with

intensity values in [0− 255].The average intensity value for

the White Matter is 158, for the Gray Matter is 105, for the

cerebrospinal fluid 36 and 0 for the background. An 8-coil

system is simulated using the artificial sensitivity in Fig. 1.

Image in each coil is corrupted with Gaussian noise with

std σn ranging in [5 − 40] and ρ2 = 0.1 between all coils.

The k-space is uniformly subsampled by a factor of 2 and

reconstructed using SENSE. Note that the variance of noise

of the subsampled images in each coil is amplified by a factor

r [5]: (σ2n)sub = r × σ2n.

Results for the experiment are shown in Fig 3-(a): the

average of the 100 experiments divided by the actual value

of σ2n is depicted. Accordingly, the closer to 1, the better the

estimation. From the figure it can be seen that the estimation

is very accurate for all the considered values of σn. The

estimation is similar to the one carried out for single coil

data in [2]. However, the goodness of the estimation lies in

the fact that the sensitivity maps are available. We repeat

the estimation assuming that the maps are not available, and

considering a single σ2
R

value for the whole image:

σ̂2
R

=
1

2
mode

{
〈M2
L(x)〉x

}
(14)
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Fig. 3. Estimation of the variance of noise from SENSE. The average of
100 experiments is considered.

Fig. 4. Slice from a brain T1 acquisition done in a GE Signa 1.5T EXCITE
with 8 coils.

We define the ratio σ̂2
R
/σ2
R
(x) and we calculate the average,

the minimum and maximum values across the image, and the

average along 100 samples. Results are depicted in Fig 3-

(b). The estimated value presents a constant bias of around

5% for all values. The estimated value will be in a range

from 85% to 100% of the original value. Hence, if GW (x)
is unknown, estimating an individual value of σ2n will only be

acceptable for certain applications, whenever they are robust

enough to cope with a bit deal of bias and a higher deal of

uncertainty in this parameter.

Finally, an experiment is carried out with data from a real

acquisition, see Fig. 4, with sensitivity map in Fig. 1-bottom.

First, as a golden standard, parameter σn is estimated from

the Gaussian complex data:

Real component σ̂n = 4.1709
Imag. component σ̂n = 4.0845

Then a subsampled acquisition is simulated and recon-

structed with SENSE. σn is first estimated using eq. (12) and

then, assuming the map GW (x) is unknown, using eq. (14).

Results are as follows:

Magnitude (GW (x) known) σ̂n/
√
r = 4.1728

Magnitude (GW (x) unknown) σ̂n/
√
r = 4.8404

Note that the value estimated using the proposed method is

totally consistent with the estimation done over the original

complex Gaussian data. The blind estimation method, on the

other hand, overestimates the noise level, but it can still be

within an acceptable error rate for some applications. How-

ever, note that this time, the method overestimates the value,

unlike the previous experiment, in which it underestimates

it. The using of this simplification will go along with an

uncertainty on the direction of the bias.

V. CONCLUSIONS

The proper modeling of the statistics of thermal noise in

MRI is crucial for many image processing and computer

aided diagnosis tasks. While the stationary Rician model has

been the keystone of statistical signal processing in MR for

years, the stationarity assumption is no longer valid when

parallel imaging and SENSE reconstruction are considered.

The main assumption for single coil acquisitions is that

the noise is stationary, and therefore a single value of σ2n
characterizes the whole data set. However, when pMRI and

SENSE are considered, due to the reconstruction process,

the variance of noise becomes x-dependent, with a different

value for each pixel.

To overcome the problems of non-stationarity we have

proposed a novel noise estimation technique to be used with

SENSE reconstructed data. The estimation of the spatially

variant σ2
R
(x) is of paramount importance, since the knowl-

edge of this parameter will allow us to re-use many of the

methods in literature proposed for single-coil Rician models.

In most cases it will suffice with changing an scalar σ2n value

by the spatially dependent σ2
R
(x).

The estimation method has shown to be accurate, robust

and easy to use. However, it also shows some limitations.

First, correlation between coils must be known beforehand,

as well as the sensitivity map from each coil. Finally, some

post processing software in the scanner may add a mask

to data, which eliminates part of the background, drastically

reducing the number of points available for noise estimation.
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