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Abstract—The parallel magnetic resonance imaging (parallel 

imaging) technique reduces the MR data acquisition time by 

using multiple receiver coils. Coil sensitivity estimation is 

critical for the performance of parallel imaging reconstruction. 

Currently, most coil sensitivity estimation methods are based on 

linear interpolation techniques. Such methods may result in 

Gibbs-ringing artifact or resolution loss, when the resolution of 

coil sensitivity data is limited. To solve the problem, we 

proposed a nonlinear coil sensitivity estimation method based 

on steering kernel regression, which performs a local gradient 

guided interpolation to the coil sensitivity. The in vivo 

experimental results demonstrate that this method can 

effectively suppress Gibbs ringing artifact in coil sensitivity and 

reduces both noise and residual aliasing artifact level in SENSE 

reconstruction. 

I. INTRODUCTION 

Parallel Magnetic Resonance Imaging (parallel imaging) 
uses multiple receiver coils to simultaneously acquire MR 
signals with sub-Nyquist sampling rate. With the spatial 
information provided by the sensitivity distribution of receiver 
coils, these signals can be restored into a un-aliased image via 
proper reconstruction algorithms. Previously proposed 
algorithms include k-space based methods such as SMASH[1], 
GRAPPA[2] PARS[3] and KSPA[4], image-domain based 
methods such as SENSE[5] and PILS[6], and hybrid methods 
such as SPACE RIP[7]. 

Among these methods, SENSE (sensitivity encoding) has 
the benefit of mathematical accuracy. However, it is sensitive 
to the accuracy of receiver coil sensitivity estimate since it 
explicitly requires the knowledge of receiver coil sensitivity to 
unfold the aliased data set [5]. The data for coil sensitivity 
calibration can be obtained by using either an additional low 
resolution scan[5, 8, 9] or the autocalibrated signal (ACS) based 
on a self-calibrated data acquisition scheme [10-13]. For both 
strategies, the natural way for increasing the sensitivity 
accuracy is to increase the data resolution. However, this is 
usually prohibited by the limited scan time. With limited 
calibration data resolution, coil estimation method is probably 
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the most important way of improving the coil sensitivity 
accuracy. Currently, most estimation methods utilize linear 
interpolation to obtain a full-size coil sensitivity map. 
Typically, the low resolution data were first low-pass filtered, 
zero-pad it to the size of the desired image, and Fourier 
transformed back to image space [10]. Although simple, this 
linear interpolation method is essentially un-adaptive and has 
an intrinsic trade-off between resolution and Gibbs-ringing 
artifact, which may lose spatial information in the calibration 
data and result in worse geometry factor [5].  

To this problem, a new nonlinear estimation algorithm 
based on nonlinear steering kernel regression method was 
proposed for more accurate coil sensitivity estimation.  The 
proposed method first estimates a low resolution sensitivity 
map and then adaptively interpolates it into the size of the 
desired image using steering kernel regression method [14] that 
performs a local and adaptive data fitting. The method was 
experimented using in vivo brain image. The results 
demonstrate that the method can effectively suppress the 
Gibbs-ringing without sacrifice the resolution. The 
corresponding SENSE reconstruction also exhibits lower 
noise level. 

II. SENSE AND STANDARD COIL ESTIMATE METHOD  

A. The standard SENSE model 

The magnetic resonance signal data acquired by a receiver 
coil can be formulated as:  
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receiver coil.  The discretization of (1) leads to the following 
the linear equation: 
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In order to reduce the acquisition time, the parallel 

imaging technique simultaneously acquires the data below 

Nonlinear Coil Sensitivity Estimation for Parallel Magnetic 

Resonance Imaging using Data-Adaptive Steering Kernel Regression 

Method* 

Sheng Fang and Hua Guo 

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 1096



  

the Nyquist sampling rate using multiple coils.  With the 

spatial information contained in the coil sensitivity, the 

desired image m
JG

 can be reconstructed by inversing the 

system matrix E in (2).  The corresponding least square 

solution can be written as: 
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where H indicates transposed complex conjugate and � is the 
noise covariance matrix [5]. Equation (3) is the solution of the 
standard SENSE which takes the sampling noise into 
consideration. However, since the system matrix E is 
ill-conditioned, even small noise in the data can be 
significantly amplified by the matrix inversion procedure in 
(3). Therefore, regularization is needed to stabilize the 
solution. 

B. Standard linear estimation algorithm 

The scheme of standard coil sensitivity estimate algorithm 

was shown in Fig.1. Since the zero-padding operation in the 

third step introduces significant Gibbs ringing, a linear low 

pass filtering is needed. Due to the intrinsic trade-off between 

resolution and Gibbs ringing in Fourier extrapolation 

methods, the extrapolated image can either have residual 

Gibbs ringing or reduced resolution. In both cases, the original 

spatial intensity distribution can be twisted.  
Since the polynomial fit has the property that the fitting 

result exactly goes through the given data points, such error 
cannot be reduced in the final step and can remain in the 
estimated coil sensitivity maps.  

 

III. THE PROPOSED NONLINEAR METHOD 

A.  Steering kernel regression 

Nonlinear interpolation methods have been proved to be 
effective in upscaling (zooming) images with better preserved 
edges and reduced Gibbs ringing[14-17].  Of all the methods, the 
steering kernel regression method was chosen for coil 
sensitivity estimation, because it can automatically adapt itself 
to local properties of data set. Steering kernel regression can 
be formulated as a data-adaptive generalization of classical 
data fitting methods such as the polynomial fitting with spatial 
adaptive data selection [14]. 

Following the framework of non-parametric fitting 
problem, steering kernel regression can be modeled as[14]: 
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 is the pixel intensity of acquired single coil 

sensitivity at spatial position r
G

, ( )k <  is the regression 

function to be estimated;  P is the total number of pixels that is 

involved in the regression function. ( )
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is the i.i.d noise.   

Using Taylor expansion, the regression function can be 
approximated as: 
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where ( )zþ is the Hessian matrix.  For a second-order fitting 

problem, the kernel regression method finds the most 
appropriate regression function by solving the following 
weighted least square minimization: 
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 is the regression kernel that can automatically 

adapts to local image features. And the zero-order Taylor 

coefficient 
0

E  is the desired image to be estimated. 

B. Steering kernel 

Unlike traditional kernel regression that uses a fixed kernel 

( )
i

rK r�
G G

, steering kernel regression uses an data adaptive 

kernel based on the covariance of image gradients between 
pixels involved in the kernel[14]: 
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where Ci is the covariance matrix of spatial gradient vectors of 

pixels in a neighborhood window centered at position r
G

, and 
h is the thresholding parameter that depends on the noise level.   
The covariance matrix Ci changes the isotropic Gaussian 
kernel into an anisotropic kernel that flexibly describes local 
image gradient distribution. Therefore, the kernel regression 
can automatically adapt to local image structures.  
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Figure 1.  Flow chart of the standard coil sensitivity estimation 

algorithm. The number in the parenthesis indicates the typical matrix 

size of the intermediate result at each steps 
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C. Nonlinear coil sensitivity estimation using steering kernel 

regression 

Using steering kernel regression method, the proposed 
nonlinear coil sensitivity process can be expressed by the 
following flow chart. 

 

Low resolution coil sensitivity was directly calculated 
using the acquired data by normalizing each coil images by the 
sum-of-squares image. Since no interpolation or filtering is 
performed, no additional error is introduced to the resultant 
low resolution coil sensitivity. At the last step, the low 
resolution coil sensitivity is upscaled by steering kernel 
regression method, so that the high resolution coil sensitivity 
can be obtained directly. 

IV. EXPERIMENTAL RESULTS 

A. Experiment  

The proposed nonlinear coil sensitivity estimation method 
was applied to in vivo brain imaging experiment and 
compared with standard linear method to demonstrate its 
feasibility. The images acquired by 

The in vivo anatomical brain data were fully acquired 
using a 3T scanner (SIGNA EXCITE, GE healthcare) with an 
8-channel head coil. A 3D inversion recovery fast spoiled 
gradient recalled (3D IRfSPGR) sequence was used to acquire 
the axial brain images from a healthy volunteer. The 
parameters of the IRfSPGR sequence were: TR = 6.052 ms, 
TE = 2.844 ms, flip angle = 20°, slice thickness = 3 mm with 
zero slice gap, slice number = 20, FOV = 240 mm×240 mm, 
and the acquisition matrix = 256×256. The low resolution coil 
sensitivity data were acquired in a separate scan with the 
matrix size of 32×32.  

The fully sampled k-space data were down-sampled to 
simulate different acceleration factors. The sum-of-squares 
image which was obtained using the fully sampled data was 
used as a gold standard for comparison. For linear 
reconstruction, the widely-used local polynomial fitting 
algorithm was used [5]. 

B. Results 

Fig. 3 compares the coil sensitivity maps estimated by 
different methods. The 32×32 low resolution exhibits obvious 
mosaic effect. Meanwhile, there are also visible Gibbs ringing 
artifacts (the 1st row of Fig. 3).The coil sensitivity maps given 
by linear estimation method showed considerable Gibbs 
ringing artifacts (indicated by the black arrow in the 2nd row of 
Fig. 3). In comparison, the coil sensitivity maps estimated by 
the proposed nonlinear method effectively removed these 
Gibbs ringing artifact, showing a very smoothing result. 

 

SENSE reconstruction results with coil sensitivity 
estimated by both linear and nonlinear method are compared 
in Fig. 4 for different reduction factors. Images reconstructed 
with linear coil sensitivity estimates (the 1st row of Fig. 4) 
show an overall higher noise level than that with nonlinear coil 
sensitivity estimates (the 2nd row of Fig. 4). As the reduction 
factor goes higher, images reconstructed with both methods 
exhibit an increasing noise level due to the ill-posedness of the 
SENSE reconstruction.  

Fig. 5 compares the difference maps between images 
reconstructed with different coil sensitivity estimates and the 
sum-of-squares image for different reduction factors. For 
reduction factor 2, the result image based on linear coil 
sensitivity method shows visible residual aliasing artifact (as 
pointed to by the arrow in Fig. 5). For reduction factor 3, the 
image obtained by SENSE and linear coil sensitivity method 
shows obvious residual aliasing artifact. When the reduction 
factor is as high as 4, the reconstructed image using linear coil 
sensitivity estimate showed ringing-like noise as well as 
intensive residual aliasing artifact. In contrast, images 
reconstructed with nonlinear coil sensitivity estimates showed 
lower noise level and residual aliasing artifact level.  

Tab. 1 summarizes the root mean square error (RMSE) of 
all experiment results. The image reconstruction with 
nonlinear coil sensitivity estimate shows the less RMSE for all 
tested reduction factors. 

 

Figure 3.  Coil sensitivity maps estimated by different methods. The 1st 

row shows 32×32 low resolution coil sensitivty; the 2nd row shows coil 

sensitivity estimated by standard linear method; the 3rd row shows coil 

sensitivity estimated by the proposed nonlinear method. 

 

Figure 2.  Flow chart of the proposed nonlinear coil sensitivity 

estimation method 
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TABLE I.  RMSE OF IMAGES RECONSTRUCTED WITH LINEAR AND 

NONLINEAR COIL SENSITIVITY ESTIMATES 

 R=2 R=3 R=4 

Linear 0.59 1.08 2.01 

Nonlinear 0.53 0.88 1.53 

V. CONCLUSION 

A new nonlinear coil sensitivity estimation method was 

proposed to improve the accuracy of coil sensitivity. The 

proposed method suppresses Gibbs ringing and reduces 

resolution loss effect in current linear method by utilizing 

nonlinear image upscaling technique that is based on 

data-adaptive steering kernel regression method. The in vivo 

experiments demonstrate that the proposed method can 

effectively improve the accuracy of coil sensitivity estimation, 

which reduces both the residual aliasing and noise power of 

SENSE reconstruction results in presence of poor resolution 

of coil sensitivity data. 
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              R = 2                 R = 3                 R = 4

Figure 5.  Difference maps of SENSE reconstruction results using 

linear and nonlinear coil sensitivity estimates for reduction factor 2, 3 

and 4. The 1st row shows difference images for linear coil sensitivity 

estimation; the 2nd  row shows difference images for the proposed 

nonlinear method. 

              R = 2                 R = 3                 R = 4

Figure 4.  Zoomed-in part of SENSE reconstruction results using 

linear and nonlinear coil sensitivity estimates for different reduction 

factors. The 1st row shows SENSE reconstructed images using coil 

sensitivity estimated by standard linear method; the 2nd  row shows 

SENSE reconstructed images using coil sensitivity estimated by the 

proposed nonlinear method. 
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