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Abstract— Parallel excitation (pTx) is recognized as a crucial
technique in high field MRI to address the transmit field
inhomogeneity problem. However, it can be time consuming
to design pTx pulses which is not desirable. In this work, we
propose a pulse design with gridding conjugate gradient (CG)
based on the small-tip-angle approximation. The two major
time consuming matrix-vector multiplications are substituted
by two operators which involves with FFT and gridding only.
Simulation results have shown that the proposed method is 3
times faster than conventional method and the memory cost is
reduced by 1000 times.

I. INTRODUCTION

Spatially tailored RF (TRF) pulses Magnetic Resonance
Imaging (MRI) in can excite arbitrary valued spatial patterns.
Parallel excitation (pTx) [1-3] techniques exploit the addi-
tional degree of freedom provided by the multiple transmit
channels to shorten the RF pulse duration and reduce the
specific absorption rate (SAR) [4, 5]. The combination of
TRF and pTx is regarded as the promising method to address
challenges in the high field MRI, such as field inhomogeneity
and high SAR [6].

One widely used method under the small-tip-angle ap-
proximation [7] is the spatial domain method [3]. In this
method, a specified target pattern and a k-space trajectory
are specified and a set of linear system equations is built.
The pulses can be designed by solving the linear system
using various numerical methods such as conjugate gradient
(CG). One major problem of such a pulse design is the
high computation cost since each iteration will require two
matrix-vector multiplications. And. Generally, it can take
2−5 minutes [8] to design a moderate 3-D pulse, which can
prevent the parallel excitation technique from being used in
real-time applications. Meanwhile, the large system matrix
has to be clearly specified before design which will require
memory allocations on the level of several gigabyte. The
entire design will require memory size several times of that.

Currently, some methods have been reported to accelerate
the spatial domain pulse design method. For example, by
employing the sparsity in the excitation pattern, the design
equation can be transformed into the sparse domain and
truncated to reduce the computation load [9, 10]. However,
the method with sparse transform can only speedup the
design for up to 10 times depending on the sparsity of
the target pattern. Another method [11] is reported in that
the design of parallel excitation pulses can be significantly
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accelerated by using the CUDA enabled GPU. However, the
design using GPU is limited in size due to the limit available
memory on GPU (no more than 2 GB for a single GPU).

In this paper, we propose a very fast pulse design method
that addresses both the memory and design speed problem.
The two computational expensive matrix-vector multiplica-
tions are substituted by two operators, which carry out the
same physical functions as the multiplications. However, the
computation cost and memory cost are significantly reduced.
Simulation results of the proposed method shows that the
design speed is improved for 3 times and the memory cost
is reduced by 103 times with the same excitation error and
convergence rate.

II. METHODS
We will first briefly review the conventional spatial domain

method [3] for parallel excitation pulse design. Then, a new
method for pulse design with gridding CG is proposed in
which the computation costly matrix-vector multiplications
are substituted by the gridding operators. Finally, a piece-
wise linear model is provided to incorporate off-resonance
in the pulse design with gridding CG.

A. RF pulse design using the spatial domain method

Under small tip angle assumption (STA) [7], the excitation
pattern of transverse magnetization and the complex RF
pulse are Fourier pairs defined on the chosen k-space trajec-
tory. Parallel excitation pattern of a multi-channel transmit
system is the linear sum of the excitation patterns from all
the channels weighted by the transmit sensitivity of each
individual coil,

M (~x) = iγM0

∑
l

Sl (~x)

∫ T

0

bl(t)e
i~x~k(t,T )dt (1)

where M (~x) is the specified spatial target patter, Sl is the
B+

1 map of the l−th channel and the excitation trajectory is
defined as integral of gradient ~k (t, T ) = −γ

∫ T

t
G(s)ds . To

solve the RF pulse bl(t), Eq. (2) is discretized in time and
in space as,

M [~xi] = iγM0

∑
l

Sl [~xi]

∑
j

bl [tj ] e
i~xi

~k[tj ]

 (2)

In matrix form, it becomes

m =
∑
l

SlAbl (3)

where m is the vector form target pattern, Sl is the sensitivity
matrix of the l-th channel with the constant iγM0, A is
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the inverse Fourier encoding matrix defined on the k-space
trajectory ~k, and bl is the sampled driving RF waveform
vector of the l-th channel to be solved. Bold variables denote
the matrices and vectors.

Then the pulse design problem can be formulated as a
minimization problem,

argmin ‖m− SAfullb‖2 (4)

where the system matrix is defined as Afull =
∑

l SlA
and the b vector is a stack of bl from all the channels.
Numerical methods such as CG method can be used to solve
the problem. In a typical 3D design with 8-ch transmit array
with a target pattern of resolusion 32× 32× 32, the system
matrix Afull would approximately have 30k×10k elements
for a 8 msec pulse. And it takes about 10 min to solve Eq.
(4) on an i7-core computer.

In each iteration of CG, the major computations (more
than 90%) are consumed by two matrix-vector multipli-
cations: Afull× and AH

full×. Each of these two requires
nmnrfnc complex scalar multiplications, where nm, nrf and
nc are the number of pixels in the target pattern, the number
of sampled points of the RF pulse for a single channel and
the number of channels respectively.

B. RF pulse design with gridding CG

In this section, two operators G1 and G2 are introduced
to substitute the matrix-vector multiplications without spec-
ifying the large system matrix. The operators combine the
gridding of k-space data, FFT and the sensitivity modulation.
So they are physically equivalent to the matrix-vector multi-
plications in the process of pulse design. The flow charts
of these two matrix-vector multiplications with gridding
operators are given in Fig. 1.

The forward operator G1 on bl[t] will carry out the same
function as the matrix-vector multiplication of the pulse of
the l-th channel,

SlAbl = G1{bl[t], Sl[x],~k[t]} (5)

The A matrix is an inverse Fourier encoding matrix that
maps bl[t] from on the non-Cartesian excitation trajectory
~k (e.g. spiral trajectory) to a spatial domain pattern on the
Cartesian grid. Thus, it can be replaced by gridding, as in
[12], followed by an inverse FFT. In the process of the
gridding, the pulse (k-space data) bl[t] is first convolved with
the Kaiser-Bessel kernel and then sampled on the Cartesian
grid with doubled resolution corresponding to 2×FOX. The
reason of sampling on a grid with finer resolution is to
reduce the aliasing artifact caused by the convolution kernel
in spatial domain. Then, an inverse FFT of the Cartesian data
generates a spatial pattern of size 2×FOX. Then, the pattern
is trimmed from the center to size of FOX and divided pixel-
by-pixel by the inverse Fourier transform of the convolution
kernel to compensate the convolution. After gridding, the
pattern is modulated by the transmit sensitivity Sl(x) and
reshaped into vector form.

From Eq. (3) and Eq. (5) , the final pattern vector is the
linear sum of the pattern vectors from all channels,

m =
∑
l

SlAbl =
∑
l

G1{bl[t], Sl[x],~k[t]} (6)

Similarly, the backward operator G2 performed on the
spatial pattern M[x] will play the same role as the Hermitian
transposed matrix-vector multiplication for the l-th channel,

(SlA)
H
m = AHSH

l = G2{M [x], Sl[x],~k[t]} (7)

In this backward operator, the spatial pattern is first mod-
ulated by the Hermitian transposed transmit sensitivity of
the l-th channel as SH

l m. Then, the Fourier encoding matrix
AH , which maps the spatial domain Cartesian pattern to data
on the non-Cartesian k-space trajectory ~k, is substituted by
gridding. In this gridding process, the sensitivity modulated
pattern SH

l m is first divided pixel-by-pixel by the inverse
Fourier transform of the convolution kernel and zero-padded
to the size of 2×FOX. The k-space data on the Cartesian grid
is then obtained by the FFT of the spatial pattern. Finally,
the k-space data is convolved with the convolution kernel
and sampled along the desired trajectory ~k.

The result of the Hermitian transpose multiplication of the
system matrix is a stack of vectors from individual channel
results obtained from Eq. (7) as,

AH
fullm =

[
(SlA)

H · · · (SLA)
H
]
m

=
[
G2{M [x], S1[x],~k[t]} . . . G2{M [x], SL[x],~k[t]}

] (8)

Finally, the same CG method as in the conventional
method will be used to solve the pulse design problem. In
the steps of CG, the two multiplications are substituted by
Eq. (6) and Eq. (8).

The approximate computation cost (number of complex
scalar multiplications) of the operator G1 and the direct
matrix multiplication are compared in Table I. Parameter
ε = 2 denotes the factor of oversampling/zero-padding and
w = 6 is the size of convolution kernel. In the general design
setup, the magnitude of ns and nm are on the similar level in
order to satisfy the Nyquist rate without pTx acceleration. So
the computation cost is approximately reduced by the factor
of

ns
w2 + ε2 log2(ε

2nm) + 2
. Note that only the amount of

multiplications is counted here.
For a pulse with ns = 1024 to excite a target pattern

defined on a grid with nm = 1024 points, the computation
cost of Afullb with operator G1 for nc = 8 channels is
about 12 times less than the direct multiplication. As a dual
pair, the computation of AH

fullm with operator G2 shares the
same computation gain versus the direction corresponding
matrix multiplication.

The savings in memory cost is much more significant.
In the pulse design gridding CG, only several matrices
of size nmnc need to be saved. In the direction matrix
multiplication, the system matrix Afull of size nsnmnc
need to be stored. In the above example, the memory cost
is reduced by about 3 magnitudes using the gridding CG
method.
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Fig. 1. Flow chart of the two matrix-vector multiplications substituted by
the two operators G1 and G2

TABLE I
COMPUTATION COSTS OF Afullb WITH OPERATOR G1 AND THE DIRECT

MATRIX MULTIPLICATION (NUMBER OF COMPLEX MULTIPLICATIONS)

Afullb with operator G1 Afullb
⊗ FFT × , ÷

w2nsnc ε2 log2(ε
2nm)nmnc 2nmnc nsnmnc

III. EXPERIMENTS

To evaluate the performance of the proposed design
method, a 2-D tailored pulse will be designed to excite a
2-D pattern as in Fig. 2(a) over a 20 × 20cm2 FOX. An
8-ch linear transmit array and a spiral trajectory as in Fig.
2(b) with 2× pTx acceleration are used for the design using
the proposed method and the conventional spatial domain
method. The total pulse length is 5.3msec with a dwell
time of 0.0026msec. It is assumed that there is no off-
resonance effect in this experiment. And both methods are
performed with exactly the same setup, including parameters,
transmit sensitivities and the target pattern. The residual of
each CG iteration is measured by the l2 norm of the current
residual vector which can show the convergence. And the
quantitative difference between the two methods in term of
designed pulse, excitation error, design time and memory
cost are compared. The excitation patterns for excitation error
measurement are obtained from the Bloch simulator.

The proposed pulse design method with gridding CG is
used to design pTx pulses with the off-resonance information
incorporated. The conventional spatial domain method is also
used to design pulses for comparison. The time cost of the

Fig. 2. (a) The target pattern for the pulse design and (b) the excitation
k-space trajectory with acceration of R = 2

pulse designs are recorded and the final excitation patterns of
the designed pulses are evaluated using the Bloch simulator.

All simulations are performed in Matlab 2011b (Math
Works, Natick, MA) on a desktop with 2.67GHz i-7 CPU
and 9 GB memory.

IV. RESULTS

The pulse design result of the experiment on designing 2D
ptx in the absence of off-resonance is given in Fig. 3. The
residual curve of the proposed method is shown in Fig.3(a).
And its relative difference in residuals comparing to the
conventional design is shown in Fig.3(b). As can be seen,
the CG in the proposed method converges towards zero at
the same rate as the conventional method and the relative
difference is within 0.5%. The excitation patterns from the
Bloch simulator are shown in Fig.3(c). Both the methods
lead to an normalized root mean square error of 5.65% as
expected, because the maximum error of a single gridding
step is controlled below 0.1%. Thus, the proposed method
can achieve the same accuracy as the conventional method.

The time consumed by the matrix-vector multiplication
with operator G1 and the direct multiplication in the con-
ventional design are 2.3 sec and 18 sec respectively in 100
times of iteration. Similar gain is observed for the Hermitian
transposed matrix-vector multiplication with G2. And the
total design time is reduced by about 10 fold using the
proposed method.

The system matrix Afull alone requires 1012 GB memory
in the conventional method. In the pulse design with gridding
CG, it requires no more than 5 MB memory in total. Thus,
the memory cost of the proposed method is improved by
about 3 magnitudes.

V. CONCLUSION AND DISCUSSION

In this work, we proposed a very fast pulse design method
based on the spatial domain method with gridding CG.
The matrix-vector multiplications, which are computational
expensive in the conventional method, are substituted by two
operators which involves with FFT and gridding only. The
design speed can be improved by about 10 times theoretically
and validated by 2 times in the experiment.
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Fig. 3. Results of pulse design using gridding CG: (a) The residuals of
each step in the gridding CG and (b) its relative difference from CG with
the matrix-vector multiplications. (c) The excitation patterns

The memory cost can be reduced by 103 times by using
the proposed method. This eases the memory burden of
designing longer pTx pulses with more transmit channels or
exciting a pattern defined on a grid with finer resolution.
Meanwhile, the memory bottleneck of implementing the
pulse designs on GPU is completely broken. The proposed
operators are implemented on a channel by channel base and
can be easily paralleled. All these promise a further speedup
of 20 times of the proposed method. Future work will include
develop the technique to include off-resonance term in the
proposed pulse design method and implement this method
on GPU to achieve highest design speed.
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