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Abstract— In the context of medical imaging, super-resolution
(SR) is currently a promising post-processing technique to
increase the image resolution. However, although many SR
methods have been proposed in the literature, the gain of
this type of approach in a real situation has not been pre-
cisely quantified. In this work, we evaluate image acquisition
protocols and SR algorithms using in-vivo brain MR data as
gold standard. The results show that using orthogonal image
acquisition protocols lead to better reconstructed images than
overlapping parallel low-resolution image stacks. Moreover, if
the preprocessing steps (such as image denoising and intensity
correction) are carefully performed, there is no significant
differences between the evaluated SR algorithms.

I. INTRODUCTION

3D MR acquisitions such as MPRAGE or SPGR provide

an efficient route to providing high isotropic resolution with

optimal collection of signal over a few minutes. However,

this is a still significant acquisition time in the context

of clinical imaging where motion during any of the 3D

acquisition period will impact the entire volumetric scan. As

a result, multi-slice imaging is still a preferred route in many

clinical settings since slice imaging time is much less than

a full volume, and motion, when it occurs, only impacts

a subset of slices. However, in order to ensure acceptable

signal to noise in multi-slice acquisitions slice thicknesses

are often many times the in-plane pixel size leading to highly

anisotropic resolution.

To overcome this relative poor resolution, image process-

ing algorithms such as super resolution (SR) techniques have

been explored during the last decade. The core principle of

SR methods is to combine several low-resolution images of

the same scene taken at different view points to create a high

resolution image. Such techniques are of primary interest in

medical imaging where image resolution remains a key point

for many image analysis steps such as segmentation.

In MRI, several image acquisition protocols can be con-

sidered appropriate for SR processing. It is important to

notice that in MRI, the best that can be aimed for in the

terms of resolution enhancement to within plane resolution

is image deblurring due to the band limited nature of the

acquired signal used to form each slice. However, in cases of
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suitable slice profile, SR techniques can be used to increase

the resolution in the inter-slice direction. For instance, in [5],

Greenspan et al. have proposed an interleave strategy which

consists in combining overlapping parallel low-resolution im-

age stacks to reconstruct a high-resolution image. In contrast

during fetal brain MRI studies [15], usual image acquisi-

tion protocols consist in acquiring at least three orthogonal

anatomical images in each direction (axial, coronal and

sagittal) to provide the radiologist with an overview of the

fetal brain. In this context resolution is not simply provided

by repeated but shifted acquisitions, but from ani-isotropic

acquisitions with complementary orientations that can be

combined to provide isotropic resolution. SR algorithms have

been evaluated in [11] to study the influence of the number

of input images and image noise level on the quality of

reconstructed images.

After having determined the image acquisition protocol,

another key step in SR algorithms is the mathematical

methodology used to recover the high resolution image

using a dedicated observation model. As an example, the

reconstruction algorithm used in [5] was based on the iter-

ative back-projection. Other reconstruction methods such as

algebraic methods or regularized techniques have also been

explored in MRI context [9]. A review of SR techniques

in medical imaging can be found in [6]. Moreover, other

image modeling strategies have been recently investigated to

increase brain MR image resolution by using inter-modality

priors [10], groupwise analysis [11] or dictionary-based

approach [14].

Another key question about SR in MRI is the potential

gain in resolution that can be achieved. In the general

context of SR, Baker and Kanade in [1] have shown that

”the reconstruction constraints provide less and less useful

information as the magnification factor increases”. Typically,

the maximum magnification factor is smaller than 2. This has

led them to propose a supervised reconstruction technique

to introduce details in the reconstructed images. The study

of gain resolution in the context of MRI has been done

by few researchers [8], [16], [9]. However, despite all the

reconstruction methods proposed in the literature, it is not

clear what can be the gain in resolution in a practical context,

or what is the optimal image acquisition protocol.

Lastly, SR techniques are usually quantitatively evaluated

using synthetic images or phantoms and visually evaluated on

real datasets. Using synthetic data provides only information

on ”possible” performance of SR algorithms. Indeed, such

evaluation is an ”inverse crime” since the same observation

model is used for low resolution image synthesis and SR

reconstruction (i.e. to invert data in an inverse problem).

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 1081



Using real MR images of phantoms is also not a fully sat-

isfactory solution for SR evaluation because such phantoms

exhibit image properties (such as large uniform areas and

strong edges) that rarely happen in in-vivo MR images. As

a consequence, there is a clear need for the community to

develop gold standard images based on in-vivo MR data for

SR algorithm benchmarking.

The purpose of this experimental work is to provide new

insights on effective gain resolution when considering in-vivo

brain MR data. This article presents a comparison of several

SR techniques and image acquisition protocols evaluated on

in-vivo brain MRI. Section II describes the image processing

problem of SR, highlighting the definition of data discrep-

ancy functionals and regularization functionals. Section III

presents MR data and the pre-processing steps (such as

denoising, intensity correction and registration) required for

the construction of a gold standard and for application of

SR techniques to MR images. Lastly, Section IV describes

comparison results of image acquisition protocols and SR

algorithms using in-vivo gold standard brain MR image.

II. SUPER-RESOLUTION

SR is usually expressed as a problem of estimating a

quantity degraded by a linear operator and corrupted by

noise :

y = Hx+ n (1)

where H is a linear operator linking the unknown quantity

x ∈ X to the observed data y ∈ Y and n is the noise.

This mathematical formulation is commonly encountered in

many other image processing problems such as denoising,

deconvolution, segmentation, inpainting.

Using the observation model described by Equation (1), a

straightforward definition of the data discrepancy functional

is:

D(x, y) = ψ(Hx− y). (2)

ψ is usually set as a quadratic functional by assuming that

the image noise n follows a Gaussian distribution. Another

common choice for ψ is the L
1 norm as it is usually more

robust to outliers. In this work, we have compared these two

data discrepancy functionals (L2 and L
1 norms).

However, an estimate of x (denoted as x̂) cannot be

uniquely determined by minimizing D(x, y) since it is an

ill-posed problem. For such inverse problems, some form

of regularization plays a crucial role and must be included

in the cost function to stabilize the problem or constrain

the space of solutions. One popular variational regularization

functional relies on the total variation:

JTV (x) =

∫

|∇x(v)|dv (3)

where v is a voxel of the image. Charbonnier et al. in [2]

have proposed several edge-preserving regularization func-

tionals from which we select one to use in our experiments:

JCh(x) =

∫

φ(∇x(v))dv (4)

with φ(t) = 2
√
1 + t2−2. In this work, we have considered

these two regularization functionals (JTV and JCh).

The overall energy (D(x, y) +λJ(x)) is minimized using

a gradient descent algorithm. The parameter λ acting as a

trade-off between the data-fidelity term and the regularization

has been chosen empirically by maximizing the peak signal

to noise ratio (PSNR) between the gold standard and the

reconstructed image.

III. EXPERIMENTAL SETTING

A. Data

In this work, experiments have been carried out on a set of

T1-weighted MPRAGE images of the same acquired in one

session on a 3T Siemens Verio MRI Scanner (SIEMENS, Er-

langen, Germany). The following pulse sequence parameters

were used: repetition time = 2800 ms, echo time = 2.67 ms,
inversion time = 1140 ms, field of view = 256× 256 mm2.
Isotropic images (voxel resolution : 1 × 1 × 1 mm3) were

acquired to provide a gold standard image (also called ground

truth in the literature) for evaluation purpose. Overlapping

anisotropic images (voxel resolution : 1 × 1 × 2 mm2) in

the three directions (axial, sagittal and coronal) were used

as low resolution image inputs to SR algorithms.

B. Preprocessing

A key point in evaluating SR algorithms is to make sure

that the gold standard and the reconstructed images are

similar. In order to do so, motion and intensity corrections are

required. The following (freely available) image processing

pipeline have been applied to the set of MR images: 1) brain

extraction using a supervised patch-based technique [12], 2)

bias correction using N4ITK [17], 3) a groupwise midway

histogram equalization similar to the algorithm proposed

in [4], 4) image denoising using nonlocal means [3] , 5)

and motion estimation (rigid transforms) using Rview1. Steps

1,3,4 make use of algorithms implemented in the Baby Brain

Toolkit (BTK) [13].

The first step consists in extracting the brain from the MR

images. In this study, this is done by applying a supervised

patch-based label propagation technique. Briefly, this algo-

rithm makes use of local similarities between the image to

be segmented and the images contained in a MRI-derived

anatomy textbook. Using such patch-based local similarities

has shown to be very effective for brain segmentation [12].

The second step of the pipeline is the correction of inten-

sity bias due to radio-frequency field inhomogeneities. In this

work, we have used the N4ITK algorithm proposed in [17]

which is basically an implementation of the well-known N3

algorithm using ITK. The purpose of this algorithm is to

correct smooth variation of the intensity over the tissue that

should have intensity close to uniform.

The third step consists in making the intensity of brain

tissues consistent for each image of the data set. This is

performed in a groupwise fashion using midway histogram

equalization [4]. Consider two images I1 and I2, whose

1http://rview.colin-studholme.net
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Fig. 1. Comparison of denoising algorithms for gold standard building on sagittal view. Images are displayed using the same contrast scale. First row: A)
original image, denoised images using B) SUSAN-FSL, C) BTK-NLM [13], D) PRINLM [7]. Second row: difference images (E,F,G) between the original
image (A) and the denoised images (B,C,D). Following the ”noise method” evaluation approach, the BTK version of the nonlocal means algorithm (C,F)
provides the most satisfactory results.

Fig. 2. Close up of images. Left: gold standard (isotropic denoised image), middle: low-resolution coronal image, right: SR image.

cumulative histograms are M1 and M2. In order to make

them have the same histogram, a cumulative histogram

M has to be chosen so that the two images have a new

cumulative histogram equal to M by applying a contrast

change. The intermediate cumulative histogram M can be

constructed as follows:

M =

(

M−1

1
+M−1

2

2

)−1

. (5)

Then, each image Ii is replaced by φi(Ii) where φi =
M−1 ◦ Mi. It is straightforward to extend this histogram

equalization technique to a set of N images by considering

an intermediate cumulative histogram defined as follows:

M =

(

∑N

i=1
M−1

i

N

)−1

. (6)

In order to form an optimal gold standard image, the fourth

step of the pipeline is a denoising step. A nonlocal means

technique has been applied and the result has been carefully

checked in order to avoid any loss of details in the high

resolution image. We have compared three denoising algo-

rithms (SUSAN-FSL2), BTK version of the nonlocal means

(BTK-NLM) [13], prefiltered rotationally invariant nonlocal

means filter (PRINLM) [7] using the ”noise method”, i.e.

by analyzing visually the difference images between the

2http://fsl.fmrib.ox.ac.uk

original image and the denoised images. Results are shown

on Figure 1. The best denoised image is the one where

the difference image is as similar to a pure noise image

as possible, i.e. intensities of the difference image should

not depend on the brain tissues. While the SUSAN-FSL

algorithm provides less optimal results, the denoised images

using PRINLM and BTK-NLM are good candidates for SR

gold standard building. Moreover, it has to be noticed that

denoising low resolution images helps the SR algorithms to

converge to a better estimate of the high resolution image. As

a consequence, all the images used in this study have been

denoised using the nonlocal means technique (BTK-NLM).

The last step of the proposed pipeline is the motion

estimation. This is a key point in SR techniques since

a poor estimation of motion leads to an incorrect matrix

H . Therefore, SR algorithms are highly dependent on this

step. In this work, rigid transforms have been estimated

between the gold standard image and the low resolution

images by maximizing the Normalized Mutual Information

as implemented in the standard registration within Rview.

IV. RESULTS

For quantitative comparison, the PSNR is reported in

decibels (dB):

PSNR = 10 log10

(

d2

|Ω|−1
∑

v∈Ω
(x(v) − x̂(v))2

)

(7)
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where d is the reference image dynamic. The PSNR is related

to the mean square error between the gold standard and

the reconstructed image. Because the brain is the object of

interest in this study, the PSNR has to be computed only on

brain tissues.

The brain mask estimated using the patch-based labeling

algorithm cannot be used for SR evaluation purpose. Indeed,

some tissues or structures such blood vessels (due to blood

flow) and fat (due to chemical shift) have different intensity

appearances depending on the orientation of the image acqui-

sition (axial, coronal or sagittal). Then, in order to perform

a fair comparison between image acquisition protocols, it

was necessary to build a mask in which brain tissues share

the same appearance whatever the direction used for image

acquisition.

To do so, all low resolution images have been registered

to the gold standard image. Then, considering all the images

(i.e. the gold standard and the registered images), an image

of the intensity variance is computed at each voxel. High

variance means that images may not share the same intensity

appearance at a particular location. Then, the brain mask

used for evaluation is the intersection (i.e. logical operator

AND) of the brain mask obtained using the supervised patch-

based labeling technique [12] and a thresholded version of

the variance map.

TABLE I

PSNR RESULTS DEPENDING ON THE DATA DISCREPANCY

FUNCTIONALψ, THE REGULARIZATION TERM J AND THE ACQUISITION

PROTOCOL.

ψ J axial coronal sagittal ortho3 ortho6

L
2 JTV 35.02 35.00 33.93 37.15 37.15

L
1 JTV 34.94 34.58 33.12 36.98 37.49

L
2 JCh 35.48 34.78 34.07 37.47 37.49

L
1 JCh 34.82 34.59 33.14 36.91 37.52

The analysis of PSNR results (see Table I) shows that

using orthogonal acquisitions leads to better reconstruction

results than using overlapping anisotropic images in the same

direction (axial, coronal or sagittal). This was expected be-

cause images were acquired using 3D MPRAGE sequences.

This means that only orthogonal acquisitions provide com-

plementary information in the k-space. Acquiring shifted

acquisitions helps the increase of the signal to noise ratio and

in this case, the SR methods acts as deblurring technique.

Moreover, the performance of the SR algorithms are very

similar using 3 or 6 orthogonal images with the proposed

preprocessing pipeline. Figure 2 shows an example of SR

reconstruction compared to the gold standard (left column)

and low-resolution anisotropic coronal image.

V. CONCLUSIONS

The purpose of this work has involved the study of proto-

cols for image acquisition and SR reconstruction algorithms

using in vivo brain MRI. We have proposed a image process-

ing pipeline carefully designed to take into account possible

distortions such as intensity variations of brain tissues. The

results highlighted some significant differences in the quality

of reconstructions based on different acquisition protocols.

Future work will involve the construction of a larger set

of images (for example by using a wider range of image

resolutions) to provide the community with a consistent

means for evaluating SR algorithms applied to different

forms multi-slice MRI data seen in clinical practice.
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