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Abstract— A large number of sophisticated techniques have
been proposed over the last few decades for automatic analysis
of brain MR images to help clinicians better diagnose and
understand anatomical changes due to neurological disorders.
While significant improvements in performance have been
achieved, almost all techniques suffer from a common limitation
of high computational complexity due to the large number
of voxels present in a typical MR volume. Computational
complexity is a major hurdle in the clinical application of these
sophisticated image analysis techniques. Brain MR volumes
consist of approximately piecewise constant tissue regions with
high redundancy among voxel intensities, which can be grouped
into perceptually meaningful entities (superpixels) to reduce
the complexity. In this study, we investigate the utility of
superpixels (2D) and supervoxels (3D) in reducing computa-
tional complexity of brain MR analysis tasks. We investigate
the extent of spatial and intensity distortions introduced in
superpixel representation of MR images and evaluate its effect
on brain tissue segmentation as an example task. We observe
that superpixels are highly promising for significantly reducing
the computational complexity of the lower-level image analysis
tasks that are often essential components of MR analysis
pipelines.

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) produces large
amounts of data that is difficult to interpret through manual
inspection. This has motivated the development of sophisti-
cated computer-based tools that can extract clinically relevant
information from brain MR data and better present it to
physicians. Such tools typically consist of a series of low-
level image analysis tasks (such as tissue segmentation, de-
noising and bias field removal) that preprocess MR volumes
for reliable feature extraction. While state of the art algo-
rithms illustrate fairly good performance, a common problem
associated with most methods has been high computational
complexity, which is expected to further exacerbate as ad-
vances in MR imaging produce higher resolution images with
more MR voxels. A combination of these low-level analysis
tasks with high complexities limits the clinical application
of any such computer-based tool.

The problem of high computational complexity can po-
tentially be addressed by grouping MR voxels with high
redundancy in features such as texture and intensity, since
they are likely to belong to the same physical world object.
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This concept is known as superpixels in the field of computer
vision. Unlike some other medical images (such as mammo-
grams), brain MR images contain approximately piecewise
constant regions that can be represented using superpixels
and, thereby, address the problem of high computational
complexity associated with the low-level image analysis
techniques. To the best of our knowledge, superpixels have
never been explored in brain MR image analysis.

Superpixels need to have several important properties
before they can be considered for application in MR image
analysis. First, superpixel representation should not distort
the important anatomical details in MR images that could
affect the performance of subsequent image analysis tasks.
Thus the superpixel representation should have strong spatial
adherence to the tissue boundaries in MR images and cause
minimal loss of intensity information. Second, superpixel
generation in itself should have low complexity, and should
significantly reduce the complexity of subsequent image
analyses. Third, several MR image analysis tasks utilize
neighborhood relationships and, thus, superpixels should be
compact (or regular) in shape. Irregular superpixels tend
to share boundaries with several other superpixels and,
therefore, are unsuitable for defining such neighborhood
relationships. While all these properties are desirable, there is
an interplay between the superpixel compactness, boundary
adherence, intensity distortion and complexity reduction that
must be balanced.

In this study, we investigated the utility of superpixels (and
supervoxels) for reducing the complexity of MR analysis
tasks. We quantitatively evaluated the ability of superpixels
to adhere to tissue boundaries and preserve intensity informa-
tion in MR images. We studied the relationship between spa-
tial/intensity distortions from superpixel representation and
the reduction in computational complexity achieved for sub-
sequent image analysis tasks. As an example of application
to low-level MR analyses, we also demonstrated the utility
of superpixel representation in brain tissue segmentation and
studied its implications on the speed and accuracy of the
task.

II. METHODS
A. Evaluation of Superpixel Techniques

We evaluate the most popular superpixel generation ap-
proaches for application in brain MR analysis. Normalized
cuts (N-cuts) approach [1] recursively partitions an image
pixel graph by minimizing a cost function defined on the par-
tition boundaries. N-cuts produces very compact superpixels
but suffers from high complexity O(N3/2) and poor bound-
ary adherence. Quick shift [2] is a mode-seeking algorithm
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that forms a tree of links with the nearest neighbor increasing
the Parzen density estimate. Quick shift has good boundary
adherence but suffers from high complexity O(dN2) (d is a
constant) and provides no means to control the compactness
of superpixels generated. Felzenszwalb et al. [3] proposed
an approach based on agglomerative clustering such that
superpixels are the minimum spanning tree of constituent
pixels. They show good boundary adherence, but the method
suffers from high complexity O(N logN) and produces ir-
regular superpixels. Most of these approaches also do not
provide any control over the number of desired superpixels.

Achanta et al. [4] recently proposed simple linear iterative
clustering (SLIC), which performs a constrained search
space k-means clustering on the voxel intensities and spatial
locations to generate superpixels. SLIC is fast (O(N)), pro-
duces compact superpixels, allows control over the number
of desired superpixels and has good boundary adherence
[4]. This makes SLIC an ideal choice for investigating the
significance of superpixels in brain MR image analysis tasks.
We briefly describe SLIC algorithm in the next section.

B. SLIC Superpixels and Supervoxels

Notation : N represents the total number of MR voxels, C
represents the desired reduction in complexity, and k = N/C
represents the number of superpixels.
Initialization : The initial superpixel centers Sj =
[Isj , xsj , ysj ]T are sampled uniformly on the image domain
at a grid interval of

√
N/k, where Isj and (xsj , ysj ) repre-

sent the intensity and spatial location of superpixel centers,
respectively. Superpixel centers are moved to the lowest
gradient position in a 3× 3 neighborhood to avoid centering
a superpixel on an edge or seeding with a noisy pixel.
Assignment : Image voxels vi are assigned to the closest
superpixel center within a search space of 2S × 2S around
the voxel. The distance D to a superpixel center is defined
as,

D =

√(
dc
m

)2

+

(
ds
S

)2

(1)

where, ds =
√

(xcj − xi)2 + (ycj − yi)2 and dc =√
(Icj − Ii)2; vi = [Ii, xi, yi]

T and Sj = [Isj , xsj , ysj ]T

correspond to the ith voxel and jth superpixel, respectively.
Update : Superpixel centers Sj are adjusted to the mean
vector [Ii, xi, yi]

T of all the voxels belonging to the cluster.
Convergence : Assignment and update steps are repeated
iteratively until the residual error, calculated as the L2 norm
between the new and older superpixel centers, converges.

In this study, we investigated the application of superpixels
and supervoxels in brain MR image analysis. 2D superpixels
are generated independently for every MR image slice and
then combined to represent the whole MR volume. The
concept of superpixels can be easily extended to supervoxels
(in 3D) by including depth dimension in the spatial distance
term ds. 3D supervoxels are computed directly on the MR
volume additionally utilizing the depth information in reduc-
ing image redundancy.

Fig. 1: Sample MR image slices segmented using SLIC into
k = 500, 1000, and 2000 superpixels.

C. Application in Brain Tissue Segmentation

We considered the low-level image analysis task of brain
tissue segmentation and investigated the effect of super-
pixel/supervoxel representation on its accuracy. We assumed
voxel intensities as normally distributed inside each tissue
class Tj and classified MR voxels vi by minimizing the
negative joint log-likelihood over the entire image,

L =
∑
j

∑
v∈Tj

[
log(σj) +

(I(v)− µj)
2

2σ2
j

]
where, µj and σj denote the mean and covariance matrices
of tissue class Tj , respectively. When segmenting brain MRI
represented using superpixels, voxels v can be replaced with
superpixels S. We quantify the segmentation accuracy by
calculating the Jaccard overlap metric J(A,B) = |A ∩
B|/|A ∪ B| between the obtained tissue segmentation (A)
and the expert ground truth segmentation (B). While spatial
information in the form of class priors can be included to
improve segmentation performance, the primary objective
here is to study the effect of image distortion due to su-
perpixel representation on the performance of image analysis
tasks. Therefore, we used an objective function defined solely
based on intensities to drive brain tissue segmentation. The
objective function is minimized using graph cuts in this
study.

III. EXPERIMENTS & RESULTS

Using two real datasets, we investigated (i) the ability
of superpixels to spatially adhere to tissue boundaries in
MR images, (ii) the local loss of intensity information due
to superpixel representation, (iii) the effect of any super-
pixel induced distortion on the performance of brain tissue
segmentation, and (iv) the improvement in computational
complexity from the use of superpixel representation.

A. Data

We consider two well-established real brain MR datasets
obtained from the Internet Brain Segmentation Repository
(IBSR) to investigate the significance of superpixels in brain
MR image analysis. These datasets contain expert ground
truth tissue segmentations (WM, GM, and CSF). IBSR-20
contains 20 normal brain MR volumes collected using 1.5
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(a) m = 10 (b) m = 20 (c) m = 30 (d) m = 50 (e) m = 100 (f) m = 200

Fig. 2: Visual illustration of superpixels generated at different levels of compactness parameter m.
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Fig. 3: Average under-segmentation error across IBSR-18
and IBSR-20 subjects for different levels of (a) compact-
ness parameter m (using k = 2000), and (b) reduction in
complexity C using superpixels and supervoxels (m = 30).

Tesla scans with slice thickness of 3.1mm, whereas IBSR-
18 contains 18 normal brain MR volumes collected using 3
Tesla imaging system with slice thickness of 1.5mm.

B. Adherence to MR Tissue Boundaries

We studied the interplay between the boundary adher-
ence, complexity reduction (C), and superpixel compactness
(m) to obtain a balance between these three properties
for accurate MR image representation. We quantified the
boundary adherence ability of SLIC superpixels using under-
segmentation error defined as,

U =
1

N

 M∑
i=1

 ∑
sj |sj∩gi>B

|sj |

−N


where, M is the number of ground truth regions, gi denotes
the ith ground truth segmentation, and sj |sj ∩ gi represents
the superpixel set that represents the region gi. B is a
minimum threshold of overlapping pixels between sj and
gi that accounts for any ambiguities in the ground truth and
is set to 5% of |sj | in our experiments (similar to [4]). U
measures the leakage of superpixels across tissue boundaries
and has been widely used in the computer vision literature
[4], [5], [6].

First, we studied the effect of the compactness parameter
m on the boundary adherence ability of superpixels (U ).
Fig. 2 visually illustrates that higher values of m correspond
to more regular and grid-like superpixel structure; however,
higher m also adversely affects the boundary adherence

of superpixels (Fig. 3a). Next, we studied the relationship
between reduction in complexity C (or superpixel number k)
and the boundary adherence of superpixels. Fig. 3b shows
that U increases with increase in complexity reduction C.
This was also illustrated in Fig. 1 where higher k better
captured the finer details in MR images. We also compared
the boundary adherence of superpixels with supervoxels
(Fig. 3b). While superpixels show better boundary adher-
ence ability at small values of C, supervoxels show much
better boundary adherence for higher complexity reduction.
Supervoxels illustrated much higher stability in boundary
adherence with increase in C and achieved much higher
reduction in complexity (C ≈ 200) in comparison with
superpixels (C ≈ 75) maintaining the same levels of U .

Boundary adherence should not be affected by the pres-
ence of bias field in MR images, as long as a sufficient
number of superpixels are used to represent the image,
because the slowly varying bias field has negligible effect
when the superpixel size S is small (S ∝ 1/

√
k). We

tested this hypothesis by calculating the difference in under-
segmentation error ∆U between MR volumes containing
high levels of bias field and MR volumes without any
significant bias field using the IBSR-20 dataset. We observed
very little difference ∆U < 0.005 when MR images are
represented using k > 1500. As expected, ∆U increased
when the number of superpixels was small (for k < 500,
∆U > 0.025).

C. Local Loss in Intensity Information
Superpixel representations result in local loss of intensity

information, which can be thought of as intensity distortion.
We quantified the loss in local intensity information due
to the superpixel/supervoxel representations using average
fractional intensity loss (AFL),

AFL =
1

N

N∑
i=1

|IS(vi) − Ivi |
Ivi

where, Ivi and IS(vi) represent the intensity values of MR
voxel vi and superpixel S(vi) containing the ith voxel,
respectively. Fig. 4a shows AFL values for the IBSR-18
and IBSR-20 datasets using superpixels and supervoxels. We
observe that while superpixels more accurately represent MR
images at lower values of C, supervoxels provided more
meaningful image representations when higher complexity
reduction is desired.
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Fig. 4: Plots showing the variation of (a) Average loss in local intensity information, and (b) White matter (WM) segmentation
performance on IBSR-20 from MR representation using superpixels and supervoxels at different levels of complexity
reduction (C). Slice GC and volume GC (in (c)) correspond to slice-wise segmentation and volumetric segmentation using
graph cuts (GC) respectively. GM and CSF segmentations show similar trend and, therefore, are not shown separately here.

D. Effect on Brain Tissue Segmentation Performance

Brain MR segmentation can be performed either slice-wise
(Slice GC) or volumetrically using all MR voxels (Volume
GC). Fig. 4b and Fig. 4c show that slice-wise segmenta-
tions (Slice GC + MR Voxels) have higher accuracies than
volumetric segmentations (Volume GC + MR Voxels). This
is due to the presence of bias field in MR volumes whose
effects are less deteriorating when only slice-wise data are
considered for segmentation. The effect of superpixel rep-
resentation was investigated by comparing the segmentation
accuracy obtained using superpixels against the segmentation
accuracy obtained using MR voxels. Fig. 4b shows that the
segmentation accuracy obtained on superpixel representation
rapidly decreased with increase in C, which is expected
due the combined effects of decreased boundary adherence
(Fig. 3b) and increased intensity distortion (Fig. 4a). We also
observed that the rate of decline in segmentation performance
is much less in supervoxels (Volume GC + MR Supervoxels)
than in superpixels (Volume GC + MR Superpixels).

E. Complexity Reduction using Superpixels & Supervoxels

We observed consistent patterns of MR representation
accuracy at different levels of complexity reduction using
superpixels and supervoxels. Superpixels are more efficient
for low levels of complexity reduction (C < 15) and show
little spatial and intensity distortion (U < 5%, AFL < 7%).
As a result, superpixels support accurate tissue segmentation
performance (∆JWM < 0.03), while reducing the complex-
ity by approximately 15 times. In image analysis tasks (such
as bias field removal) where MR distortions do not have
significant effects on the task performance, supervoxels can
achieve large reductions in complexity while still preserving
most of the important anatomical details in MR images. For
instance on the IBSR-20 dataset, supervoxels achieved 200-
fold reduction in complexity, while achieving good boundary
adherence (U < 9%), low intensity distortion (AFL < 6%),
and only a small decrease in segmentation performance
(∆JWM ≈ 0.02) for volumetric segmentations.

IV. CONCLUSION

In this study, we investigated the utility of superpixels and
supervoxels in low-level brain MR analysis tasks using two
real MR datasets. We evaluated the accuracy of superpixels
for brain MR image representation based on their boundary
adherence and their ability to retain important intensity in-
formation. We also investigated the effects of superpixel rep-
resentation on the reduction in complexity and performance
of brain tissue segmentation as an example of an MR image
analysis task. We showed that superpixels and supervoxels
are highly promising for significantly reducing computational
complexity of low-level MR analysis tasks (such as tissue
segmentation, denoising, and bias field removal) with little
effects on task performance.
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