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Abstract—The emotional and cognitive symptoms of bipolar 

disorder (BD) are suggested to involve in a distributed neural 

network. The resting-state functional magnetic resonance 

imaging (fMRI) offers an important tool to investigate the 

alterations in brain network level of BD. The aim of this study 

was to discriminate BD patients from healthy controls using 

whole-brain resting-state functional connectivity patterns. The 

majority of most discriminating functional connectivities were 

between the basal ganglia and three core neurocognitive 

networks, including the default mode, executive control and 

salience networks. Using these resting-state functional 

connectivities between the basal ganglia and three core 

neurocognitive networks as the features, the clustering accuracy 

achieved 90%. 

I. INTRODUCTION 

Bipolar disorder (BD) is a mood disorder with a 
prevalence of at least 1% and creates a considerable health 
care burden [1]. The hallmark symptoms of BD are extreme 
mood fluctuations known as depression and mania. The 
abnormal mood swings in BD patients influence their 
behaviors and cognitive function, such as sustained attention 
[2], psychomotor speed [3] and decision-making [4]. It has 
been proposed that these emotional and cognitive symptoms 
involve in a distributed neural network rather than an 
individual brain region [5]. Hence, investigating the 
alterations in the brain network level can be helpful to 
understand the pathophysiology of bipolar disorder.  
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The resting-state functional magnetic resonance imaging 
(fMRI) has been used to map large-scale brain network by 
estimating the functional interactions between brain regions, 
namely, the functional connectivity. The functional 
connectivity between brain regions during resting state is the 
similarity of spontaneous fluctuations in the 
blood-oxygenation-level-dependent (BOLD) signal of fMRI 
[6]. Several studies have revealed that the resting-state 
functional connectivity maps mirror brain functional networks, 
including the sensorimotor, auditory, visual, executive control 
(ECN), and default mode (DMN) networks [7]. The 
whole-brain resting-state functional connectivity patterns 
have been used to identify cognitive states [8] and psychiatric 
disorders, such as major depression [9].  

This study aims to discriminate BD patients from normal 
controls (NC) using whole-brain resting-state functional 
connectivity patterns. The functional connectivity was 
estimated between each pair of 90 functional regions of 
interests in the 14 resting-state networks, which were 
previously identified by independent component analysis [8]. 
We expected that BD patients may present a different 
connectivity pattern of the resting-state networks associated 
with the emotional and cognitive processing compared with 
NC. The altered connectivity patterns can be used as features 
to classify BD and NC. 

II. MATERIAL AND METHOD 

A. Participants 

This study was conducted under the approval of the 
Institutional Review Board of Taipei Veterans General 
Hospital. Fifteen patients with bipolar I disorder (mean age, 
42.9 years; 10 men) were recruited from Taipei Veterans 
General Hospital. Clinical psychiatrists confirmed the 
diagnosis of all patients using the fourth edition of the 
Diagnostic and Statistical Manual of Mental Disorders 
(DSM-IV). Before acquiring fMRI images, the depressive and 
manic symptoms of BD patients were rated using the 
Hamilton Depression Rating Scale (HAMD, 7.8±7.6) and the 
Young Mania Rating Scale (YMRS, 3.6±4.4), respectively. 
Sixteen age- and gender-matched normal controls (mean age, 
43.4 years; 11 men) with no history of psychiatric illness, 
neurological or physical disorders, alcohol or drug 
dependence, or electroconvulsive therapy were also recruited. 
All participants were right-handed and gave voluntary and 
informed consent. 
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B. Imaging data acquisition and preprocessing 

Functional imaging was performed on a Discovery 
MR750 3T system (GE Healthcare, USA) at Taipei Veterans 
General Hospital. The whole brain volume was acquired in 43 
axial slices using an echo planar imaging (EPI) sequence. The 
resting fMRI contained 200 volumes with the following 
parameters: slice thickness of 3.5 mm, interslice gap of 1 mm, 
repetition time (TR) of 2500 ms, echo time (TE) of 30 ms, flip 
angle of 90°, field of view (FOV) of 222×222 mm

2
, and 

matrix size of 64×64. Each participant was scanned for 
approximately 500 s while resting in a supine position with 
eyes closed. Structural 3D T1-weighted images were obtained 
using a rapid acquisition gradient echo for each participant 
(TR = 12.2 ms, TE = 5.2 ms, flip angle = 12°, FOV = 
256×256×168 mm

3
, and matrix size = 256×256×168). The 

preprocessing of functional analysis was conducted using 
SPM8, including slice-timing, realignment, spatial 
normalization and smoothing. 

C. Functional parcellation and functional connectivity 

matrix 

We parcellated the normalized EPI images using 90 
functional regions of interests (fROIs) which were generated 
from 14 functional networks by Shirer et al.  [8]. The 14 
functional networks, including the precuneus, basal ganglia, 
sensorimotor, auditory, high visual, primary visual, language, 
visual spatial, dorsal and ventral DMN, bilateral ECN, 
anterior and posterior SN, were extracted by independent 
component analysis. The regional time series in each of the 90 
fROIs was obtained by averaging the fMRI time series over all 
voxels in the fROI. The influence of head motion, the 
confounding effects of CSF and white matter, and the global 
mean were regressed out to eliminate the effects of 
physiological noise [10]. Each regional time series was further 
temporally band-pass filtered (0.01-0.08 Hz) to reduce the 
effects of low-frequency drift and high-frequency 
physiological noise [11]. All filtered time series were 
subsequently used to estimate functional connectivity.  

Functional connectivity between each pair of filtered time 
series for each participant was estimated using a Pearson 
correlation to construct a 90×90 correlation matrix. Fisher’s 
r-to-z transformation was applied to the correlation matrix to 
ensure the normality of the correlation coefficients for 
subsequent statistics. 

D. fROI-based representative connectivity matrix 

construction  

To obtain the representative connectivity matrices for each 
group, we performed a one-sample t-test across all 
participants for each entry of the 90×90 correlation matrix 
(Fig. 1a). We selected top 500 entries (a network with a 
sparsity of 12%) [12] from the lower triangle correlation 
matrix that were most significant in each group to maintain the 
same connectivity density between groups. The significant p 
values of the top 500 entries were smaller than 0.0005 for BD 
group and 0.0001 for NC group, respectively (Fig. 1b). Any 
entry that was significant for both groups were excluded and 
set to be zero. Therefore, these criteria retained 202 entries of 
interest for each group. This resulted in between-fROI 

functional connectivity matrix with strong positive or negative 
correlations that were consistent across participants and 
unique to a particular group (Fig. 1c). 

E. Network-based representative connectivity matrix 

construction 

To investigate the BD-dominant functional network, we 
re-constructed the fROI-based representative matrix into a 
network-based representative matrix with 14×14 entries. We 
applied the ‘winner-take-all’ strategy to assign each entry of 
the network-based representative matrix to either BD or NC 
groups. If the number of retained entries of the fROI-based 
representative matrix in BD is twice as many as that in NC, we 
assigned the entry of the network-based representative matrix 
to BD group (Fig. 1d orange entries), and vice versa (Fig. 1d 
green entries). Otherwise, the entry of the network-based 
representative matrix was set to zero (Fig. 1d white entries). 
The diagonal elements of the network-based representative 
matrix stand for the intra-network connections, and the 
off-diagonal ones stand for the inter-network connections. 

F. Classification of BD and healthy participants 

We used an unsupervised clustering method, the 
hierarchical clustering, to detect dissimilarities of resting-state 
functional connectivity for classification of BD and normal 
controls. Hierarchical clustering is a means to carry out 
grouping in a data set based on a created cluster tree with 
multilevel hierarchy, where clusters at one level are joined as 
clusters at the next higher level. Hierarchical clustering 
consists of three major parts: (1) find the dissimilarity between 
each pair of feature vectors in the data set; (2) group the 
feature vectors into a binary and hierarchical cluster tree; (3) 
determine what level or scale of clustering by cutting the 
hierarchical tree. Many algorithms are available in regard to 
the calculation of dissimilarity and the creation of cluster tree 
[13]. In this study, we adopted the Euclidean distance to 
calculate the dissimilarity, which was defined by 
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Figure 1.  Identification of bipolar-related functional connectivity pattern. 

Each entry of the 90×90 correlation matrix across all participants (a) was 

performed one-sample t- test to obtain the representative connectivity 

matrices for each group (b). (c) The fROI-based representative matrix was 

obtained by combining the representative matrices of two groups and 

removing common entries. (d) The network-based representative matrx was 

obtained using ‘winner-take-all’ strategy.  
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where 
pi

x  is the ith featured vector in cluster p and 
qj

x  is 

the jth objects in cluster q. 

The grouping procedure was initiated with N clusters (N is 
the total number of BD and NC) and any two clusters with the 
minimal values are grouped together into one cluster based on 
the Ward’s method. These newly formed clusters then link to 
each other and to other featured vectors to create bigger 
clusters until all the featured vectors are linked together in a 
hierarchical tree. Finally, we cut the hierarchical tree into 2 
clusters to classify BD patients and normal controls. 

III. RESULTS 

A.  Functional networks related to basal ganglia presented a 

unique pattern in BD  

Along the column direction of the network-based 
representative matrix, BD patients presented the dominantly 
and consistently strong functional connectivities between the 
basal ganglia (the second column) and 9 functional networks 
(Fig. 1d). Three of 9 basal-ganglia-related functional 
networks, including the auditory, primary visual and language 
networks, were associated with the interaction with the 
external world. The remaining basal-ganglia -related 
functional networks, including the DMN (ventral part and 
precuneus), bilateral CEN, and anterior and posterior SN, 
were associated with the core neurocognitive functions. In the 
fROI-based representative connectivity matrix, there were 20 
functional connectivities in these 9 basal-ganglia-related 
functional networks. These 20 functional connectivities were 
regarded as features to classify BD and NC. 

The hierarchical clustering method correctly identified 
84% of total participants (26 of 31 participants). The accuracy 
for BD patients was 87% (13 of 15 participants), and for 
healthy controls was 81% (13 of 16 participants). 

B. Significant different functional connectivity between the 

basal ganglia and three core neurocognitive networks in 

BD  

Eight of 20 basal-ganglia -related functional connectivities 
were significantly different between BD and NC groups 
(two-sample t-test, p<0.05 with FDR correction, see Fig. 2a). 
Five significantly increased functional connectivities were 
from the basal ganglia to the primary visual network (left 
thalamus), the ventral DMN (right parahippocampal gyrus), 
the left CEN (left parietal gyrus, precunues, and angular 
gyrus), and the anterior SN (left insula). Three significantly 
decreased functional connectivities were from the basal 
ganglia to the precuneus network (precuneus), the ventral 
DMN (right retrosplenial cortex and posterior cingulate 
cortex), and the right CEN (right caudate).  
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Using the 8 basal-ganglia-related functional connectivities 
with significantly difference between BD and NC groups as 
the features, the classification rate improved to 90% of total 
participants (28 of 31 participants). The hierarchical 
clustering method correctly identified 87% (13 of 15 
participants) of BD patients and 94% (15 of 16 participants) 
of NC (Fig. 2b).  

 

Figure 2.  (a) Significant different functional connectivity realted to the 

basal ganglia in BD.  (b) Using the 8 basal-ganglia-related functional 

connectivities with significantly difference between BD and NC groups as 

the classifier features, the classification rate improved to 90% of total 

participants. 

 

IV. CONCLUSION 

This study investigated the whole-brain resting-state 
functional connectivities of BD patients. We found that the 
basal-ganglia-related functional connectivity is predominant 
in BD patients, compared with healthy controls. Most of the 
basal-ganglia-related functional connectivities were linked to 
the core neurocognitive networks, including the DMN 
(ventral part and precuneus), CEN, and SN. Specifically, the 
functional connectivity significantly increased between the 
basal ganglia and left CEN, whereas that significantly 
decreased between the basal ganglia and the ventral 
DMN/precuneus in BD patients. The basal ganglia subserved 
in the emotional and cognitive processing which are related to 
the dopamine transmission. Changes in the 

basal-ganglia-related functional connectivity implicated that 
the dysregulated dopamine transmission resulted in the 
emotional and cognitive deficits of BD [14]. The 
basal-ganglia-related functional connectivities with 
significant difference between BD and healthy subjects can be 
used as features in hierarchical clustering to achieve 90% 
recognition rates. 
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