
  

Abstract— In this work, a novel brain MRI segmentation 

approach evaluates microstructural differences between 

groups. Going further from the traditional segmentation of 

brain tissues (white matter –WM-, gray matter –GM- and 

cerebrospinal fluid –CSF- or a mixture of them), a new way to 

classify brain areas is proposed using their microstructural MR 

properties. Eight rats were studied using the proposed 

methodology identifying regions which present microstructural 

differences as a consequence on one month of hard alcohol 

consumption. Differences in relaxation times of the tissues have 

been found in different brain regions (p<0.05). Furthermore, 

these changes allowed the automatic classification of the 

animals based on their drinking history (hit rate of 93.75 % of 

the cases).   

I. INTRODUCTION 

Alcoholism is an important psychiatric disorder among 
European population (currently is top 3 of death causes) [1]. 
Co-morbidity in alcoholism is common with disorders such 
as depressions, anxiety, bipolar disorders, psychosis, and 
antisocial behavior [2]. Heavy alcohol intake has been 
associated with both structural and functional changes in the 
central nervous system [3]. 

Neuroimaging is being increasingly used in the diagnostic 
and longitudinal study of mental disorders, becoming an 
important tool in clinical environments. Anatomical, 
functional, and biochemical changes in the brain of alcoholic 
patients have been observed: a reduction of cortical thickness 
[4], a reduction of white [5, 6] and gray matter [6, 7], an 
increase in cerebrospinal fluid volume [5], and a gray matter 
dysfunction [6, 7].  

It is important to note that all findings mentioned above are 
based on the study of structural changes in the brain. For this 
purpose, a robust MRI brain tissue segmentation is needed. In 
fact, segmentation of brain images has been an important 
challenge in the last few years and numerous approaches 
have been proposed [8-10], being divided in supervised and 
unsupervised classification techniques. 

Usually, unsupervised segmentation algorithms statistically 
model the distribution of MRI intensities, assuming in most 
of the studies three different brain tissues (white matter, gray 
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matter, and cerebrospinal fluid) and studying their differences 
from a structural point of view. However, multimodal 
imaging methods allow more precise measurements of brain 
microstructure. Physical properties of water that govern MRI 
contrast can be used to characterize tissue attributes. 
Different quantitative parameters are related to the contrast 
between tissues. Relaxation times (T1 and T2), magnetization 
transfer saturation (MT) and parameters derived from 
Diffusion Tensor Imaging (DTI) such as fractional anisotropy 
(FA, an index of fiber coherence) or mean diffusivity (MD) 
are widely used. 

This work has two main objectives. Firstly, a novel 
segmentation method is proposed that complements 
traditional brain segmentation methods with a novel tissue 
classification based on similar microstructural properties 
derived from quantitative multimodal MRI. Secondly, the 
effects on brain microstructure associated to hard alcohol 
intake in a genetic rat model of alcoholism have been studied 
using the developed methodology.  

II. METHODS 

A. Animals 

Drug naïve male rats of the Sardinian-marchigian alcohol 
preferring msP line [11] were obtained from the breeding 
facility at the University of Camerino, Italy. The breeding has 
continued for over 35 generations. Alcohol consumption in 
msP rats is > 5 g/kg/day. 

In total, 8 subjects were considered for this study. Animals 
were individually isolated each other for 30 days with 2 
bottles: one full of water and the other full of EtOH diluted to 
10% in water. Dissolution and water consumptions and 
weight were registered. 

MR scans were acquired before and after alcohol 
consumption in order to evaluate changes between 
conditions.  

B. Data acquisition 

 All images were acquired using a Bruker Biospec 7T 
(Bruker Biospin, Ettlingen, Germany). Anesthetized animals 
were placed in a modified saddle coil integrated within a 
customized stereotaxic animal holder. This allows precise 
positioning of the animal with respect to the coil and the 
magnet and avoids movement artifacts. 

Fifteen axial slices were planned for every subject (FOV=32 
× 32 mm

2
, matrix size = 128 × 128, in-plane resolution = 

0.125 × 0.125 mm
2
, slice thickness = 1 mm). 

Diffusion Tensor Imaging data was acquired using an Echo 
Planar Imaging diffusion sequence, with 30 uniform 
distributed gradient directions, b = 670 s/mm

2
, with two non-
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diffusion weighted images, repetition time (TR) = 4000 ms, 
echo time (TE) = 23 ms.  

T2 map images were acquired using a multi-slice multi-echo 
sequence (TR = 6000 ms, TE = [12 24 36 48 60 72 84 96 108 
120 132 144 156 168 180 192 204 216 228 240 252 264 276 
288 300 312 324 336 348 360] ms).  

T1 map images were acquired using a Rapid Acquisition with 
Relaxation Enhancement (RARE) sequence with variable 
repetition time (TE = 12.61 ms, TR = [155 250 400 800 1600 
3500 6000] ms).  

In order to facilitate spatial preprocessing steps, a three-
dimensional (3D) image was acquired using a RARE 
sequence (field of view = 32 × 32 × 16 mm

3
, matrix size = 

256 × 128 × 64, voxel size of 0.125 × 0.25 × 0.25 mm
3
, TR = 

1500 ms, TE = 9 ms).  

C. Preprocessing  

All same subject’s modalities were realigned using SPM 
8 (Wellcome Trust Centre for Neuroimaging, University 
College London, London, UK). Rigid transformation 
parameters were calculated using non-diffusion volume 
(DTI), the largest repetition time volume (T2 map) and the 
shortest echo time volume (T1 map). 

Three-dimensional images were re-scaled by a factor of 10 
and skull stripped using BET (FMRIB Centre, University of 
Oxford, Oxford, UK) [12]. Before brain extraction, images 
were rescaled in the anterior–posterior direction by a factor of 
0.5, which made the rat brains more spherical. The output 
image was reversed to original size and shape. Calculated 
mask was used to delete non-brain tissue from other 
modalities. 

Spin-lattice relaxation time maps (T1 maps) and spin-spin 
relaxation time maps (T2 maps) were calculated using an in-
house script written in MATLAB 7.1 (The MathWorks, Inc., 
Natick, MA, USA) fitting the data using a non-linear curve fit 
algorithm. 

DTI were corrected for motion and eddy current distortion 
and fitted of local diffusion tensor using an available tool in 
FSL library for this purpose. From the diffusion tensor 
components, Fractional Anisotropy (FA) was determined. 

In order to reduce confounding factors coming from the 
complex and heterogeneous anatomical structure of the brain 
couple with the inter-individual variability and the relatively 
low spatial resolution attainable (partial volume effects), a 
coronal slice located in a comparable brain position in each 
subject is only used in the study.  

D. Gaussian Mixture Model Definition 

There is a long tradition in the statistical literature of 
using finite mixture models (FMM) to perform probabilistic 
clustering allowing overlap of the clusters and handling 
uncertainty about cluster membership in a probabilistic way. 

FMMs are weighted sums of a finite number of parametric 
probability density functions (pdfs) called component 
densities. A component models the probability of the data to 
belong to a certain class in an unsupervised classification 
problem. As MRI intensities distributions can be modeled as 

a Gaussian distribution, Finite Gaussian Mixture (FGM) 
models are widely used in MRI brain segmentation. 

FGM represents the probability of an intensity value (�) 
given a set of parameters (�) and is defined as (1): 

 ������ � �	 
�����������
���   (1) 

where k is the number of the components in the model and 
� 
are mixing parameters that models the prior probability of 

that class (	 
� � ��
��� ) while ��������� is a Gaussian 

probability function defined by its mean �� and covariance 
matrix �� that represents probability of belonging to a specific 
class. 

The three microstructural parameters previously calculated 
have been used in the microstructural study of the brain. Let  
� � �������� ������� ��������be a 3-dimensional vector which 
represents the three microstructural values (T1, T2, FA) in a 
position of the brain ��.  � ���� ! � �"� is a random variable 
that represents # positions in the brain of a subject. $ 
denotes all the data observed in N subjects ($ �
 �% &�%!�%  '). The set of parameters has been 
estimated using $.  

Using Expectation Maximization (EM) algorithm [13,14], 
maximum-likelihood parameters are obtained by the 
maximization mixture log-likelihood. The EM algorithm 
converges in parameter space to a local maximum of the 
objective function, but is no guarantee of convergence to 
global maximum. For avoiding convergence to local 
maximum, algorithm is repeated 100 times with different 
initial parameters. The set of parameters with the largest 
likelihood is assumed. 

Since the number of components in the model is unknown it 
has to be estimated. Penalized likelihood methods have often 
been used in model selection in mixture problem. In our case, 
we decided to use Bayesian Information Criterion (BIC)[15]. 
BIC was evaluated in models from 1 to 30 components. 
Optimal value (()) is chosen using the minimum value of ( 
to which BIC has suffered a 99% reduction of the difference 
between its maximum value and its asymptotic value. Using 
this criterion, it is assumed that model does not get 
complicated for improving convergence in 1%. Also diagonal 
and unconstrained covariance matrices have been studied for 
modeling the data. 

Finally, each voxel is classified in one of the components 
depending on the largest posterior probability of belonging to 
every component. 

In Figure 1, the proposed tissue classification framework is 
showed.  

E. Subject Classifier 

Having defined the Finite Gaussian Model, a classifier based 
on linear discriminant analysis (LDA) is implemented and 
validated using a leave-one-out strategy. The classifier tries 
to distinguish between the two time points or conditions 
(before and after alcohol intake). 

All subjects were characterized before and after alcohol 
intake by its mean microstructural parameter in each cluster. 
Both situations were compared by performing a t-test using 
as paired samples every microstructural mean value of each 
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cluster before and after alcohol intake. Parameters which 
showed a statistically significant difference (p < 0.05) were 
used as an input for the classifier. 

Goodness in the classification of the data is validated using a 
leave-one-out strategy. Each one of sixteen data sets (eight 
subjects and two conditions) is classified using the rest of 
them as training sample. Once all sets have been classified in 
one of the conditions, the hit rate or accuracy is defined as the 
ratio between the number of correctly classified sets and the 
total number of sets. 

III. RESULTS AND DISCUSSION 

In Figure 2, BIC values for diagonal and unconstrained 
covariance matrices are represented for different  ( number 
of clusters. It is noteworthy to mention that BIC for 
unconstrained matrices is slightly lower than for the diagonal 
case. This is in concordance with the results obtained by 
Desco et al. [16] who suggest that unconstrained covariance 
matrices allow better modeling of voxels containing a partial 
volume effect. 

Using the proposed criterion to define the optimal number of 
clusters, in *=14 a reduction of 99% of the difference 
between the maximum and the asymptotic value is observed. 

Once this point has been clarified, FGM model is defined 
using EM algorithm by 14 components and unconstrained 
covariance matrices.  

Posterior probability of belonging to every component of 
each voxel is calculated. Each voxel is labeled depending on 
the largest posterior probability. In Figure 3, a map of the 
labels in a subject before and after alcohol intake is showed. 

Each cluster can be characterized using the three mean 
microstructural values (T1, T2, FA). Standard deviation of 
values in a voxel is highly related with the width of the 
Gaussian of the component.  

  

 

  
  

 

 

 

 

a) b) 

c) d) 

Figure  1. Framework.  a) MR acquisition (T1 map, T2 map and DTI). b) Realignment and map calculation. Definition of subspace $. c) Model estimation

with 5 components using EM algorithm. Each ellipsoid is related to every component of the model. d)  Each observation (voxel) is labeled with its 

maximum posterior probability of belonging to each component. 

Figure 2. Bayesian Information Criterion (BIC) as a function of the 

number of clusters. In red, using a unconstrained covariance matrix. In 

blue, using a diagonal matrix. 
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Afterwards, a LDA classifier is implemented for clusters that 
present a statistically significant difference between the two 
time points (before/after alcohol intake) in their 
microstructural composition. Using a common p threshold 
(p<0.05), T1 maps present differences in clusters 2 
(p=0.047), 3 (p=0.039), 4 (p=0.024) and 5 (p=0.024), while 
T2 maps show statistically significant differences in clusters 
9 (p=0.006) and 12 (p=0.002). Fractional anisotropy did not 
present any difference using this presented model.  

Using the model with 14 components, the hit rate is 93.75% 
of the cases, i.e. new subjects would be well-classified 
according to the evaluated microstructural parameters. High 
success rates are observed partially due to the inputs of the 
LDA algorithm, as they are microstructural values which 
have been chosen statistically different before and after hard 
alcohol consumption.  

IV. CONCLUSION 

The hard-alcohol consumption effect in the brain can be 
studied using the microstructural information of tissues 
derived from MRI acquisition. 

In this work, a fuzzy tissue classification employing three 
microstructural parameters (T1 and T2 relaxation times and 
fractional anisotropy) widely used in the study of mental 
diseases is proposed. The distribution of quantitative 
parameters derived from MRI has been modeled by a finite 
weighted sum of multivariate Gaussian distribution where 
each component of the model represents a particular tissue in 
the brain. 

The non-trivial problem of defining the number of clusters 
has been solved using the BIC value. Once the optimal 
number of components of the FGM has been calculated, the 
structure of covariance matrix of the model has been studied 
obtaining that the data are better classified if an 
unconstrained matrix is used. This conclusion is in 
accordance with other results that propose that partial volume 
effect due to the resolution of MR images can be modeled by 
non-diagonal matrix. After the model is defined, all voxels in 
the brain are classified using the largest posterior probability 

of belonging to each component obtaining a similar 
distribution of the clusters within the brain in all the cases. 

Using microstructural information a Linear Discriminant 
classifier is implemented with the aim to identify subjects 
who have been exposed to alcohol and validated using a 
leave-one-out strategy.  The 93.75 % of subjects are correctly 
classified suggesting that the study of quantitative parameters 
derived from MRI are an important tool in the identification 
of areas related to hard alcohol-consumption effect in the 
brain. 
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