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Abstract— Quantitative Susceptibility Mapping (QSM) calcu-
lates a distribution of tissue magnetic susceptibility difference in
vivo using measured magnetic field perturbation. The magnetic
field perturbation can be approximated in first order by
convolution of the susceptibility distribution with a spatial unit
dipole field. Since the convolution has to be done in all space,
a novel technique using harmonic properties of the dipole field
is introduced to confine the calculation within the measurable
region. However, discretized dipole field does not satisfy the
harmonic property near its orign. Here, we investigate an
effective spatial size of the dipole field in relation with the
nonharmonic property using Shepp-Logan phantoms including
partial volume effects. This study suggests that the dipole field
can be effectively restricted to 15 voxels in diameter and that
this value relates with the nonharmonic region of the discretized
dipole field. Moreover, the effective size in a real space is scaled
with a spatial resolution of a QSM experiment.

I. INTRODUCTION
Magnetic susceptibility is an intrinsic physical tissue prop-

erty. In order to quantify a spatial distribution of local tissue
magnetic susceptibility, a novel technique of MRI called
quantitative susceptibility mapping (QSM) has emerged. In
MRI, local magnetic susceptibility induces nonlocal mag-
netic field perturbations to an applied external magnetic
field. QSM has to solve nonlocal inversion problem of the
magnetic field perturbations to obtain the local magnetic
susceptibility. The magnetic field perturbation can be ap-
proximated in first order by a spatial convolution of the
magnetic susceptibility distribution with a spatial unit dipole
field. Since the Fourier transformed dipole field has zero
value on two conical surfaces in k-space, the resulting zero
division prohibits direct inversion in QSM[1]. In addition
to the ill-posed nature of the inverse problem, the spatial
convolution has to be done in the infinite range even though
measurable magnetic field perturbations are limited in field
of view (FOV) of MRI. Even in FOV, there are several
regions where magnetic susceptibility is different from the
surrounding tissue but a signal is not measurable in MRI,
such as bone and air. Therefore, the ill-posed inverse problem
has to be solved using incomplete data of the magnetic field
perturbations.
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Two background field removal methods utilizing mathe-
matical properties of the spatial unit dipole field have been
proposed to confine the convolution of magnetic suscepti-
bility to measurable regions of FOV[2], [3], [4], [5], [6].
The dipole field is a harmonic function except for its origin
and satisfies Laplace’s equation in the same region. The one
exploits the spherical mean value property of the harmonic
dipole field (SMV) to remove contributions from other than
measurable regions[2], [3], [4], [5]. The other focuses on
that the dipole field decays with the cube of the distance
(∼ r−3). It is formulated that the dipole field originating
from measurable region is orthogonal to the one from the
outside in Hilbert space of the field and that the projection
theorem in Hibert space can be applied[6].

In spatially sampled dipole field, however, zero value is
not derived by a digital Laplacian operator, especially near
its origin. This discrepancy in the harmonic nature between
the spatially sampled dipole field and the continuous one
brings uncertainties to background field removal in QSM.
Moreover, an effect of the dipole field on the magnetic
field perturbations becomes a slow decaying function of the
distance (∼ r−1) since larger volume (∼ 4πr2∆r) has to be
included into calculation at longer distance. Intuitively, this
does not fit to what Liu et al. implicitly suggested in [6]. We
have investigated the relation of the background field removal
with effective size of the dipole field and have presented
preliminary results at the ISMRM conference[7]. Here, we
present a further investigation of spatial sampling and size
effects on QSM by simulations with a Shepp-Logan digital
brain phantom[8], [9] including partial volume effects.

II. THEORY

The magnetic susceptibility of human tissue, χ, is usually
∼ −10ppm and can be approximated χ ≪ 1. When a strong
external magnetic field, B0, is applied along the z-direction,
only the z-component of the induced magnetization, Mz ,
is dominant and can be written by Mz = χB0µ

−1
0 . µ0

is the vacuum permeability. Therefore, we can safely omit
from calculation of QSM other than the z-component of the
magnetic field perturbation due to the magnetization. Then
the z-component of normalized magnetic field perturbation,
δbz(r), due to a magnetic susceptibility distribution, χ(r), is
given in first order by

δbz(r) =

∫
V

χ(r′)dz(r− r′)dr′. (1)
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In (1), dz(r) is a spatial unit dipole field and is defined by

dz(r) =
3cos2θ − 1

4πr3
, (2)

where θ is the angle between the z-direction and r. Since (1)
includes the Lorentz sphere correction, dz = 0 at r = 0[1],
[10]. In QSM, (1) has to be solved so as to obtain χ(r).

The integration volume, V , of (1) is infinite and should be
limited within measurable volume, Vin. Since the contribu-
tion to δbz(r ⊆ Vin) from the outside of Vin (the background
field) does not have any field source within Vin, V can be
limited to Vin by utilizing SMV of the background field,
hence of dz . According to SMV, the mean value of spherical
integration of the harmonic function equals to the value at
the center of the sphere. Therefore, the contribution of the
background field can be eliminated from (1) by applying an
operator, δ − ρ, where δ is an unit impulse function and ρ
is a mean value of a spherical sum, on the both sides of
(1). Since the MRI signal can not be obtained in the outside
of Vin, δ − ρ is meaningful only in Vin. This means that
applying δ − ρ restricts effective spatial size of dz .

The spatially sampled dipole field has to be used in (1).
As can be seen from (2), dz(r) changes very rapidly near its
origin. It means that the partial volume effects become larger
near the origin and that the voxel size is not small enough
for digital differentiation. Even in the outside of the sphere
of ρ, the spatially sampled dipole field originating from close
to the sphere does not satisfy the SMV.

III. METHODS
A. Digital Phantoms Including Partial Volume Effects

An oversampled 3D Shepp-Logan phantom (SL1) was
created at the matrix size of (32× 7)3. The SL1 was consist
of a large prolate spheroid (ps4) with an outer shell, where
the major axis was 28 × 7 voxels long and the minor axis
was 22 × 7 voxels long, including three smaller prolate
spheroids (ps1∼3), as shown in Fig. 1 (a). Each prolate
spheroid (psi) was assigned its own magnetic susceptibility
(χi) as 0.3, 0.2, 0.2 and 0.1ppm for ps1∼4. The susceptibility
values of the shell and a background were set to 1 and
0ppm, respectively. These susceptibility values were taken
from [11] and tabulated in Table I, together with other
phantoms’ values. The susceptibility distribution of SL1 was
convolved with the spatial unit dipole field, which matrix
size was (31× 7)3, to obtain the normalized magnetic field

TABLE I
ASSIGNED SUSCEPTIBILITY VALUES IN SHEPP-LOGAN PHANTOMS

`````````region
phantom SL1 SL2, SL3 SL4

ps1 (χ1) 0.3ppm 0.3ppm 0.2ppm
ps2 (χ2) 0.2ppm 0.2ppm 0.3ppm
ps3 (χ3) 0.2ppm 0.2ppm 0.3ppm
ps4 (χ4) 0.1ppm 0.1ppm 0.1ppm
ps5 (χ5) - 0.4ppm -

shell 1ppm 1ppm 1ppm
background 0ppm 0ppm 0ppm

Fig. 1. Central slices of Shepp-Logan susceptibility phantoms. (a) shows
an oversampled susceptibility map (matrix size: (32 × 7)3). (b) shows a
normalized magnetic field perturbation map calculated from (a) (matrix size:
(32× 7)3). (c) shows a magnetic field perturbation map downscaled from
trimmed (b) (matrix size: 323). (d) shows a susceptibility map downscaled
from (a) (matrix size: 323). (e)-(g) show different configurations of assigned
susceptibility values (matrix size: (32 × 7)3). (e) and (f) have four inner
prolate spheroids and (g) has differently assigned susceptibility values.

perturbation, δbz . The expanded part was trimmed to keep
central part of δbz ((32 × 7)3) for further processing (Fig.
1 (b)). In order to simulate an MRI signal, the trimmed δbz
in the regions of the shell and the background was set to
zero. Then, the oversampled δbz was downscaled to the input
matrix size, 323, by averaging every 73 voxels (Fig. 1 (c))
and used as the starting point of QSM in order to avoid
complication of phase unwrapping. The resulting δbz clearly
includes partial volume effects of MRI measurements and
minimizes effects from higher order terms of the dipole field
approximation of magnetic field perturbations near an object
boundary which is pointed out in [12]. Then a white Gaussian
noises was added to have signal to noise ratios (SNR) 20.
In Fig. 1 (d), a downscaled susceptibility distribution of
SL1 is shown. Fig. 1 (d) corresponds to the susceptibility
distribution to be obtained in QSM.

Three other Shepp-Logan phantoms, which included an-
other prolate spheroid (smaller one: SL2, larger one: SL3)
or had differently assigned susceptibility values (SL4), were
also created (Fig. 1 (e)-(g), Table I). The three δbz including
partial volume effects were calculated same as in SL1.

B. Susceptibility Estimation

The operator, δ − ρ, was applied on the input δbz and
removed ”back ground field”. As for ρ, a filled sphere of 9
voxels in diameter (Dρ) was used. In the case of comparing
size effects of ρ, four different diameters of ρ (Dρ) was
employed (Dρ = 5, 7, 9, 11 voxels). ρ was consist of voxels
which distance from the center (r) satisfied (

Dρ−1
2 )2 ≤ r2 <

(
Dρ+1

2 )2. After applying δ − ρ, the only region of 5 voxels
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Fig. 2. Size dependence of the dipole field on susceptibility calculations.
Obtained susceptibility maps of SL1 using 3 different diameters, Ddz =:
(a) 7 voxels; (b) 15 voxels; (c) 25 voxels, are shown. (d) shows dipole field
size dependence of the relative mean susceptibilities, ∆χ, of ps1-3 in SL1.
Blowups of the dipole field size dependence of ∆χ: (e) of ps1 in SL1-4;
(f) of ps2 in SL1-4; (g) of ps3 in SL1-4; (h) of ps5 in SL2, 3 are shown.

(for Dρ = 11, 6 voxels) inside from the measured δbz was
extracted for later processing of QSM.

Since susceptibility anisotropy did not exist in the Shepp-
Logan phantoms, the multiple orientation method[1], [13]
was employed to fill missing data resulting from zero value
of Fourier transformed dipole field on the two conical
surfaces in k-space. By rotating the direction of the external
magnetic field against the major axis of ps4 in three differ-
ent angles (0◦, 30◦ and 60◦), three δbz distributions were
calculated. Since the convolution is a linear operation, (1)
can be written as an equation of a matrix of dz and a vector
of δbz[14]. The susceptibility distribution was estimated in
the spatial domain by solving the inverse problem of three
matrix-vector equations, where δ − ρ was multiplied on
both sides[15]. The dipole fields with different diameters
(Ddz = 5 ∼ 27 voxels) and with 3 different oversampling
factors (nos = 1, 3, 5) were used. The oversampled dipole
field of the nos oversampling factor was created as following;
each voxel was divided into n3

os isocubic subvoxels and the
dipole field at each subvoxel was averaged within the voxel.
For each prolate spheroid (psi), mean susceptibility (χmi)
and its standard deviation (SDi) were calculated only in
the region corresponding to the homogeneous part of the
downscaled susceptibility distribution and the relative mean
susceptibilities to χm4 (∆χmi = χmi−χm4) were evaluated.

Calculations were done on a DELL PRECISION T3400
with a 3.00 GHz Intel(R) CoreTM2 Duo CPU E8400 and 16
GB memory and on a Mac Pro with a 2.66 GHz Quad Core
Intel Xeon and 16 GB memory using MATLAB R2012b 64-
bit. The LSQR algorithm in MATLAB was used in solving
the inverse problem.

IV. RESULTS

A. Size Dependence of the Dipole Field

In Fig. 2 (a)-(c), three center slices (z = 17) of sus-
ceptibility maps of SL1 calculated by using three different
diameters of the dipole field (Ddz = 7, 15, 25 voxels) and
Dρ = 9 voxels are shown. In Fig. 2 (a), the boundary

Fig. 3. Dipole field size dependence on susceptibility calculations using
different sizes of the background field removal operator, δ− ρ. Blowups of
the dipole field size dependence: (a) of ∆χ1; (b) of ∆χ2; (c) of ∆χ3 are
shown. (d) shows a change of standard deviations of calculated susceptibility
values, χ, with the diameter of the background field removal operator, Dρ.

between ps1 and ps2 were blurred and the image contrast
was different from Fig. 1 (d), but not in Fig. 2 (b), (c).
There is no significant difference between Fig. 2 (b) and (c).
In Fig. 2 (d), relative mean susceptibility values, ∆χ1−3, of
SL1 were plotted against the diameter of the dipole field,
Ddz . The ∆χ1−3 decrease as Ddz becomes larger and reach
constant values around Ddz = 15, 17 voxels, though ∆χ3

shows a different dependence and an overestimated value.
Above Ddz = 15 voxels, differences of calculated ∆χ1−3

from assigned values are around 10−2ppm and standard
deviations of calculated χ1−4 are 6×10−2ppm, 3×10−2ppm,
3× 10−2ppm, 3× 10−2ppm, respectively.

In Fig. 2 (e)-(h), relative mean susceptibility values,
∆χ1−3,5, of different configurations of Shepp-Logan phan-
toms (SL1-4) were plotted against Ddz only above Ddz =
10 voxels. Although slight deviation exists, ∆χ1−3,5 reach
constant values at Ddz = 15 voxels.

B. Size Effects of the Background Field Removal Operator

In Fig. 3 (a)-(c), the relative mean susceptibility values,
∆χ1−3, in SL1 calculated with Dρ = 5, 7, 9, 11 voxels
were plotted against the diameter of the dipole field, Ddz ,
only above Ddz = 10 voxels. As Dρ increases, ∆χ1−3

reach constant values at a larger diameter of the dipole
field, Ddz and the constant values increase. Fig. 3 (d) shows
standard deviations of calculated susceptibility values, SD1-
4, by using Ddz = 15 voxels and different Dρ. SD1-4 shows
a slight tendency to increase as Dρ increases.

C. Effects of Oversampling Factor

Fig. 4 (a)-(c) show differences of oversampling factors,
nos = 1, 3, 5, in size dependences of three relative mean
susceptibility values, ∆χ1−3, in SL1 calculated with Dρ = 9
voxels. ∆χ1−3 with nos = 3, 5 show almost same values and
reach slightly larger constant values than that with nos = 1
(without oversampling) does. In all nos, at least 15 voxels
in diameter, Ddz , are required to reach the constant value.

The normalized dipole fields with nos = 1, 3 were applied
by the Laplacian and the background field removal operators
with different Dρ and the resulting functions were plotted
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Fig. 4. Effects of the oversampling factor, nos, on susceptibility calcula-
tions. The dipole field size dependence: (a) of ∆χ1; (b) of ∆χ2; (c) of ∆χ3

by using nos = 1, 3, 5 are shown. The Laplacian and the background field
removal operators were applied to the normalized dipole field. (d) shows
the filtered dipole field with nos = 1, 3 along the θ = 0 direction.

against the diameter of the dipole field along the θ = 0
direction in Fig. 4 (d). Here, normalization was done by
the maximum value of the dipole field with nos = 1. The
deviation from the harmonic property becomes larger as
approaching to the origin of the field and its effects expands
by applying δ−ρ with a larger diameter. However, the dipole
fields with nos = 1, 3 show almost same behavior.

V. DISCUSSIONS

This investigation suggests that the spatial size of the
dipole field can be restricted to diameter of 15 voxels
for estimating a susceptibility distribution. This 15 voxels
diameter is smaller than the value, 21 voxels, we have
presented as a preliminary result in [7]. While an sufficient
value is taken accounting for slight changes of the relative
mean susceptibility values, ∆χm, in [7], a starting point
diameter is taken in this investigation since the determined
diameter is rather robust in various configurations of assigned
susceptibility values, such as in SL1-4, for smaller Dρ.

As suggested in II, the diameter for restriction increases
with the spatial size of δ−ρ. It is always a few voxels larger
than that of δ−ρ. Since deviation of the digitized dipole field
from the harmonic nature is remarkable within a sphere of
a few voxels in radius (Fig. 4 (d)), this difference can be
explained by that the outer shell having a thickness of a few
voxels acts as a nonharmonic region to the δ−ρ background
field removal and that the dipole field needs a few more
voxels in radius for sufficient estimation of a susceptibility
distribution. A larger size of δ−ρ have the larger outer shell,
and it may explain larger SD1-4 in Fig. 3 (d).

Since oversampling does not improve the nonharmonic
nature (Fig. 4 (d)), the relative mean susceptibility values
with nos = 3, 5 may show the same global tendency as that
with nos = 1. Slight increase of the constant value may be
explained by that averaging lowers absolute values of the
oversampled dipole field near the origin.

In this investigation, we ignored inhomogeneity of an
external magnetic field. However, the inhomogeneity can be
approximated by spherical harmonic expansions and lower
orders of the expansion can be easily removed by the δ − ρ
due to their slowly changing nature.

Since our numerical simulations are normalized in phys-
ical length, the determined diameter for restriction of the
dipole field is not assigned to real spatial length. This means
that effective length of the dipole field in real space depends
on a spatial resolution of an MRI experiment. If effective
physical length is needed, the resolution has to be multiplied.
This can be understood from that the spatial size restriction
originates mainly from digitalization of the dipole field after
the background field removal and that discretization of the
rapidly changing function kills digital harmonic property
near the origin even in a higher resolution image.
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