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Abstract— This paper presents a proposal for filtering 

electrooculogram signals using the Discrete Wavelet and the 

Discrete Wavelet Packet Transforms. We compare our proposal 

with other digital filters commonly used for this type of 

biological signals, evaluating the results in terms of 

signal-to-noise ratio improvement, energy, correlation 

coefficient and mean absolute error reduction. For the analyzed 

cases, the wavelet and wavelet packet approaches improve 

considerably the results obtained with digital filters. Moreover, 

we also provide the most suitable parameters for the wavelet and 

the wavelet packet analysis. 

I. INTRODUCTION 

The filtering of biological signals is a fundamental 
operation prior to its analysis. There are many factors that can 
alter a bio-signal measurement: external signals (e.g. noise 
from the power supply), other bio-signals (e.g. fetal 
electrocardiogram versus electrocardiogram of the mother), 
inherent noise of the acquisition systems. In any case, it is 
essential to get a clear signal in order to noise does not affect 
the result of the analysis of the bio-signal. 

The electrooculogram (EOG) is a test which shows 
potential changes caused by the movement of the eyes [1] and 
which is obtained by surface electrodes placed around the eye 
area. Its strength varies between 50 and 3500 μV, while its 
frequency components range from 0 to 100 Hz [2]. The EOG 
signal is useful in many clinical activities: in the evaluation of 
certain mental illnesses such as schizophrenia [3], in studying 
sleep disorders [4] or diagnosis of eye disorders such Best's 
disease [5]. In recent years, it has also been used as a control 
element in the area of the Brain-Computer Interfaces [6]. In 
particular, eye blind detection and quantification is one of the 
useful information that can be extracted from an EOG signal 
for these tasks. In all these cases, it is crucial to use a 
high-quality signal from the beginning to avoid misleading 
results in the subsequent signal analysis. Thus, a filtering stage 
that reduces the noise without distort the signal of interest 
becomes an initial and important step in all EOG analyses. 

There are different techniques for filtering signals, 
sometimes being difficult to identify which technique is best 
suited for a specific type of signal. For EOG data, common 
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digital filters are usually applied: Band-pass filters or a 
combination of high-pass + low-pass filters (e.g. [2, 7-9]). 
However, for the analysis of non-stationary signals, like the 
EOG ones, other filtering methods can provide much better 
results. In this sense, the wavelet analysis has become a 
promising alternative in the last years, with applications in 
other biological signals such as electrocardiogram [10] or 
electromyography [11].  

In this paper we have evaluated the performance of the 
wavelet analysis in EOG signals and we have compared the 
obtained results with the ones obtained using different digital 
filters.  

II. SIGNAL ACQUISITION 

Electro-oculographical signals were acquired from five 
individuals aged between 20 and 30 years and with no known 
eye problem. For the acquisition process, we used the 
BIOPAC MP35 system and Ag / AgCl electrodes. We used 
two acquisition channels, one to record information of vertical 
movements (vertical channel) and one for horizontal 
movement information (horizontal channel). Electrodes were 
placed on either side of the eyes (horizontal movements) and 
above and below them(vertical movements). The placement 
of the electrodes is shown in Fig. 1. 

 

Figure 1.  Placement of the electrodes. 

In order to obtain signals with the highest quality, the 
electrodes were placed 5 minutes before the acquisition and 
electrolytic gel was used to improve conductivity. During the 
acquisition, the individuals had to follow with the eyes 
(without moving the head) the movements of a pencil 
positioned in front of the individual at a distance of about 50 
cm. The pencil was moved up and down and right and left. 

Before capturing the signal which is going to work, the 
above process was simulated (without activating the capture) 
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in order the individuals were familiar with the whole process 
and to reduce wrong captures. 

III. WAVELET AND WAVELET PACKET TRANSFORM 

Wavelet transforms provide a time-frequency analysis 
which, especially in the case of non-stationary signals, is more 
appropriate than a separate analysis in the time or frequency 
domain. Some examples of these transforms are the Discrete 
Wavelet Transform (DWT) and the Discrete Wavelet Packet 
Transform (DWPT)[12, 13]. 

The DWT is implemented using a sub-band coding 
scheme, three stages of which are illustrated in Fig. 2. The 
operators H and G (quadrature filters) represent low-pass and 
high-pass filters, respectively, plus downsampling by a factor 
of 2 (removal of every other sample). H is known as the 
wavelet filter and it is derived from the corresponding mother 
wavelet, and G is the scaling filter. 

Supposing the original signal as s(n)=0,0(n). At each 
scale, j, of the DWT, there are 2 independent signals 
(approximation and wavelet coefficients), which can be 
expressed as: 

        j+1,0(n)=Hj,0(n) 

        j+1,1(n)=Gj,0(n)                              (1) 

        j=0, … , L-1, 

where n is the sample index, j is the scale parameter and L 
is the maximum decomposition level. Sub-index 0 indicates 
coefficients from low-pass filters, while sub-index 1 indicates 
coefficients from high-pass filters. Thus, the wavelet 

coefficients {1,1(n), 2,1(n),…, L,1(n)} characterize the 
details of the signal at different scales or resolutions, while the 

coefficients {1,0(n), 2,0(n),…, L,0(n)}represent the 
approximation of the signal at different scales. 

Therefore, for a wavelet decomposition of L scales, the 

DWT returns the following set of coefficients: {L,0(n), 

L,1(n),…, 1,1(n)}. In the DWT transform, the inverse process 
is also guaranteed through the adjoint operators, H' and G' [12, 
13]. 

The DWT decomposes the original signal following a 
fixed scheme where it is supposed that the main spectral 
information is contained at low frequencies. The DWPT 
generalizes the wavelet analysis and allows a decomposition 
of the time-frequency plane in such a way that it is well-suited 
to the signal under study. 

 

 

Figure 2.  DWT and DWPT schemes 

The DWPT follows a sub-band coding scheme as the one 
shown in Fig. 2 for three stages. At each scale, j, of the DWPT, 
there are 2

j
 independent signals (nodes or wavelet packet 

coefficients) and each of them provides two output functions: 

        j+1,2r(n)=Hj,r(n) 

        j+1,2r+1(n)=Gj,r(n)                          (2) 

        j=0, … , L-1, 

where r represents the frequency index for a given scale 
and varies from 0 to 2

j
-1. In this way, at a given scale L we 

obtain a set of signals {L,0(n), L,1(n),…, L,2L-1(n)} which is 

an alternative representation of 0,0(n). These output wavelet 
packet coefficients become the input of the next stage in the 
DWPT. 

In this case, there is not a fixed decomposition of the 

signal. There are different combinations of signals j,r(n) 
whose appropriate union can provide an equivalent 

representation of the original signal (e.g. {1,1(n), 2,1(n), 

3,0(n), 3,1(n)}, {2,0(n), 2,2(n), 2,3(n), 3,2(n), 3,3(n)} in 
Fig. 2). The only requirement is that the bandwidth of the 
original signal must be covered by the chosen set of signals, 

without overlapping, in such a way that each signal, j,r(n), 
will be associated with a frequency band. 

In general, for denoising and compression processes, the 
selection of the wavelet packet coefficients is based on the 
criterion of minimum entropy. For that, some cost function or 
entropy is associated to every node of the wavelet packet 
decomposition, as for example the Shannon entropy [14], 
which is the one used in this work. 

   [j,r]= – j,r(n)
2
·log[j,r(n)

2
].                           (3) 

The algorithm employed to determine the decomposition 
with the minimum entropy is called the "Best Basis 
Algorithm" [13], which provides the best selection for a given 
mother wavelet and cost function. 

IV. WAVELET DENOISING  

The wavelet denoising is based on the thresholding of the 
wavelet or wavelet packet coefficients. In general, large 
values usually correspond to the eye movements, meanwhile 
low values correspond to the background noise. Therefore, if 
the values below some threshold are changed to 0, the 
contribution of the noise to the corresponding wavelet or 
wavelet packet coefficients will be reduced considerably.  

There are different thresholding methods. In this work, we 
have tested two of them: the soft thresholding  

’j,r(n)=sgn(j,r(n))·(|j,r(n)|-th)    |j,r(n)|≥th 

’j,r(n)=0                                       |j,r(n)|<th,          (4) 

and the hard thresholding 

’j,r(n)=j,r(n)                            |j,r(n)|≥th 

’j,r(n)=0                                     |j,r(n)|<th,           (5) 

where the threshold is obtained as th=[2·
2
·ln(N)]

0.5
 and 


2
 is the variance of the noise, which can be estimated as the 
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median absolute deviation of the coefficients divided by 

0.6745 for zero mean Gaussian white noise. ’j,r(n) are the 
coefficients after thresholding and N is the total number of 
samples. 

V. RESULTS AND DISCUSSION 

For the evaluation of the wavelet and wavelet packet 
denoising processes, very high quality EOG signals have been 
recorded from Biopac System and contaminated with 
Gaussian noise of different amplitudes. Thus, noisy signals 
with signal-to-noise ratio (SNR) of 10, 20 and 30dB were 
taken. In Fig. 3, an example of noisy signal (SNR=10dB) is 
shown. 

 

Figure 3.  Noisy EOG signal (SNR=10dB) 

The obtained results have been compared with the 
recorded signals (i.e. the signals before being contaminated 
with noise) and evaluated according to the following 
parameters: SNR increasing (∆SNR); the percentage of 
energy respecting to the registered signal (without noise); the 
correlation coefficient; and the mean absolute error (MAE) 
reduction.  

In order to determine the most appropriate parameters 
associated to the wavelet and the wavelet packet denoising 
methods, different mother wavelets, scales and thresholding 
methods have been used. From the analyzed cases, we can 
conclude that the best results are obtained with the mother 
wavelet ‘sym8’ and ‘db5’, the scale 4, and the hard 
thresholding, although differences between hard and soft 
thresholding are not very important. For scales lower that 4, 
the wavelet packet decomposition match the wavelet one and 
provide worse results. For higher scales (5 or 6), the wavelet 
packet analysis tends to smooth the picks (e.g. eye blinks) 
providing also worse results. 

Finally, we have compared the wavelet and the wavelet 
packet denoising methods with common digital filters used in 
the analysis of EOG signals. Concretely we have implemented 
the following filters: a) High pass FIR filter with cut-off 
frequency at 0.5 Hz and a low pass FIR filter with cut-off 
frequency at 35 Hz, using a Hamming window; b) Band-pass 
FIR filter (0.5 – 35 Hz) with the Parks-McClellan algorithm; 
c) Butterworth, Type I Chebyshev and Type II Chebyshev 
low-pass filters with cut-off frecuency at 35 Hz. 

In Table 1, we present the obtained results for the analysis 
of the EOG signal shown in Fig. 3. For the wavelet approaches 
we have chosen a mother wavelet ‘db5’, a scale 4, and soft 
thresholding. 

 

TABLE I.  COMPARISON BETWEEN WAVELET DENOISING METHODS 

AND DIGITAL FILTERS 

Filtering Method ∆SNR 

(dB) 

Energy

(%) 
Corr. Coef. 

∆MAE 

(dB) 

LP+HP Hamming   4.52   98.1     0.9841   -5.33 

BP - Parks-McClellan   7.45   99.8     0.9918   -7.97 

LP - Butterworth   5.66 102.1     0.9875   -5.97 

LP - Chebishev I  -0.25   64.9     0.9845   -2.17 

LP - Chebishev II   9.10 100.7     0.9944   -9.42 

Wavelet 11.55 100     0.9533 -12.11 

Wavelet Packet 11.48 100     0.9968 -12.08 

 

In Fig. 4 and Fig. 5, we illustrate some of the obtained 
results, where the black and gray lines correspond to the 
recorded and the denoised signal, respectively. 

For all the analyzed cases, the wavelet or wavelet packet 
denoising methods provide the best results, improving 
considerably the quality of the denoised signals respecting to 
the conventional used digital filters. 

 

Figure 4.  Denoised signals obtained with the wavelet (a) and the wavelet 

packet (b) denoising methods 

VI. CONCLUSION 

Observing the results, it can be concluded that the methods 

based on the wavelet or wavelet packet transforms provide 

better results in the electrooculogram filtering than the 

common digital filters. In these cases, the mother wavelet 

‘sym8’ or ‘db5’, and the scale 4 seem to be the most suitable 

parameters for the wavelet and wavelet packet analysis.  
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Figure 5.  Denoised signals obtained with the high-pass + low-pass FIR 

filter (a), the band-pass FIR filter (b), the Butterworth low-pass filter (c), the 

Type I Chebyshev low-pass filter (d) and the Type II Chebyshev low-pass 

filter (e) 
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