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Abstract— Ventricular arrhythmias seriously affects cardiac
function. Of these arrhythmias, Ventricular fibrillation is con-
sidered as a lethal cardiac condition. Recent studies have re-
ported that ventricular arrhythmias are not completely random
and may exhibit regional spatio-temporal organizations. These
organizations could be indicative of reoccurring signal patterns
and might be embedded within the surface electrocardiograms
(ECGs) during ventricular arrhythmias. In this work, we
aim to identify such reoccurring ECG signal patterns during
ventricular arrhythmias. The detection of such signal patterns
and their distribution could be of help in sub-classifying the
affected population for better targeted diagnosis and treatment.
Our analysis on 14 ECG segments (on average 3.24 minutes per
segment) obtained from the MIT-BIH ventricular arrhythmia
database identified three reoccurring signal patterns. A wavelet
based technique was developed for automating the pattern iden-
tification process using ECGs. The proposed method achieved
automated detection accuracies of 73.3%, 75.0% and 86.6% for
the proposed signal patterns.

Index Terms— Ventricular Arrhythmia, Pattern Detection,
Wavelet Transform, Signal Processing

I. INTRODUCTION

Sudden cardiac death remains as one of the leading causes

of death, with rates as high as 400,000 in the U.S. annually

[1]. Ventricular fibrillation (VF) is one of the causes of

sudden cardiac deaths that has demanded a great deal of

attention. This is primarily because there is still very little

information with regards to the mechanisms that distorts the

coordinated ventricular activity of the heart. The study of

ventricular arrhythmias has been focused to VF due to its

lethal nature. Historically, VF has been considered to be

a combination of multiple chaotic wave fronts of electrical

excitation [2], but recent studies have disputed this notion

that VF is completely random.

The study into rotor dynamics has shown that there is some

form of organization that can provide mechanistic insights

for the arrhythmia [3]. Relating these organizational centers

to surface electrocardiogram (ECGs), surface ECGs during

ventricular arrhythmias might be embedded with the influ-

ence of these migrating organizational centers in the form of

reoccurring signal patterns with varying degree of temporal

organization. An analysis of the ECG signal patterns during

ventricular arrhythmia could reveal different distribution of

reoccurring signal patterns that may be associated to different

sub-groups of affected population. Our previous works [4],
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[5] performed classification of ventricular arrhythmias using

wavelet based energy variation over time and scale. In this

work, we explore identifying and detecting reoccurring signal

patterns during ventricular arrhythmias that may assist clin-

icians to associate pathologies with specific average pattern

distributions. The objective of this paper is to identify reoc-

curring signal patterns in arrhythmia episodes and develop

a methodology to automate the identification process. This

work uses the wavelet analysis to detect the occurrence

of signal patterns during an arrhythmia segment. Though

pattern correlation has been used to identify intra-cardiac

electrogram patterns during ventricular tachycardia (VT)

[6], wavelet analysis is better suited for pattern detection

because of the natural scaling and translation of the wavelet.

Analysis on the surface ECG is also more practical as these

are readily available for diagnosis by clinicians. The paper

provides details of the database, pattern identification and

methodology in Section II, the results and discussion on

the contributions in Section III followed by conclusions in

Section IV.

II. METHOD

A. Database

Fourteen ECG segments (with an average duration of 3.24

± 3.15 minutes) during ventricular arrhythmia were extracted

from the MIT-BIH database [7] for the purpose of pattern

identification and detection. These signals were sampled at

250 Hz and belonged to patients with varying arrhythmia

conditions. The filtering of the ECG segment (filtered be-

tween 0.5 Hz and 30 Hz) and the energy normalization were

the only pre-processing techniques applied to the database

prior to the pattern identification stage. The 14 ECG seg-

ments consists of 9 VF segments and 5 VT segments. VT

and VF account for a majority of ventricular arrhythmias,

and were only chosen to limit the pattern selection to the

most common types of ventricular arrhythmias.

B. Pattern Identification

The 14 ECG segments from the MIT-BIH database were

visually analyzed to detect reoccurring signal patterns. The

signal patterns were searched over many ventricle depolariza-

tion complexes. The patterns were grouped into either local

or global pattern. A local pattern is defined as a pattern that

is a variation of a local depolarization. A global pattern is

defined as a pattern that occurs over multiple depolarizations.

If a signal pattern is observed to reoccur, it was first classified

either as a local or global pattern. A pattern was said to

reoccur if it had at least an average of 10 occurrences
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(a) Local Pattern 1
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(b) Local Pattern 2
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(c) Global Pattern

Fig. 1: Two local patterns and one global pattern

per minute over the entire database. Following the above

procedure, we had identified 3 reoccurring patterns using the

given database. Of the three patterns, two were identified as

local patterns and one as a global pattern. The three identified

patterns are presented in Figure 1.

The identified patterns given in Figure 1 may not be

the only patterns, but these were found to be the most

reoccurring patterns for the database analyzed. Patterns

during normal sinus rhythm were not considered in this

analysis. The identified patterns were found to have sim-

ilarities to previously identified morphological patterns in

intra-cardiac/implantable cardioverter defibrillator electro-

gram tracings in literature.

• Local Pattern 1 (LP1) - This pattern shown in Fig-

ure 1a has similarities to ”double potential” that were

observed in the intra-cardiac electrograms in the close

vicinity of conduction blocks [8].

• Local Pattern 2 (LP2) - This pattern shown in Fig-

ure 1b has similarities to a single depolarization in a

monomorphic VT signal.

• Global Pattern (GP) - This pattern resembles an

amplitude modulated sinusoid (illustrated in Figure 1c).

The GP can be seen as a transition from low signal

amplitude to high signal amplitude and back to low sig-

nal amplitude. This morphology of changing amplitude

during VF has also been previously reported in literature

[9].

Following the manual identification of the patterns, our

next step was to develop an accurate automated pattern

detection technique such that these patterns can be detected

at ease over larger databases or longer ECG records.

C. Pattern Detection

The wavelet transform was selected due to its ability to

naturally scale and translate the mother wavelet to best match

the ECG signal. In wavelet analysis, a signal f(n) is modeled

by varying the mother wavelet ψ. Due to the flexibility

in generating many variations (scale and translation of the

mother wavelet), wavelet decomposition is highly adaptive to
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Fig. 2: Time-scale plane depiction of the LP1 (with the

illustration of depolarization and sub-peak)

the signal structures. In addition, the flexibility in selecting

the mother wavelet determines the characteristics of the

decomposition and helps in performing signal adaptive and

application specific analysis. The discrete implementation of

continuous wavelet transform is given by Equation 1 [10],

Wf(s,m) =
1√
s

∑N

n=1
f(n)ψ∗(

n−m
s

) (1)

where m and s represent the discretized translation and

scale parameter and Wf(s,m) represents the wavelet coef-

ficients for the discrete time signal f(n). The continuous

wavelet transform was selected over the discrete wavelet

transform because it is less affected by the translation of

a pattern [11]. In order to capture the local and global

patterns, the complex Gaussian wavelet was used because

of its similarities to the depolarization found in ventricular

arrhythmias. While the wavelet analysis was applied directly

on the local pattern ECG, in order to detect the GP, the ECG

was rectified to help identify the envelope.

Let the real, phase and normalized scalogram (squared

magnitude) coefficients of the wavelet decomposition be

represented as Wfr(s,m), Wfp(s,m) and W̃f(s,m). De-

tection of the individual depolarization was achieved by

identifying maximas in the real coefficients (Wfr(s,m))
using the eight-connected neighbourhood approach [12]. The

phase coefficients (Wfp(s,m)) was used to identify the

peak and valley of a depolarization. Figures 2 and 3 depict

the corresponding real valued coefficients (Wfr(s,m)) for

LP1 and the GP. In order to distinguish the local patterns,

the characteristic identified was that the LP1 had sub-peaks

within the depolarization, while LP2 did not have a sub-peak.

The sample illustration depicting LP1 (Figure 2) highlights

the depolarization with a sub-peak. The characteristic of the

GP used for identification was the presence of its envelope,

which is shown in Figure 3. Characteristics for each pattern

were obtained based on analyzing the 14 ECG segments from

the MIT database.

The scalogram (W̃f(s,m)) along with the real and phase

coefficients were used to detect the above discussed charac-

teristics for each pattern. For the local patterns, the sub-peaks

(or lack there of for LP2) were identified using the real and

phase coefficients. Once the sub-peak and depolarizations

were captured, a relative ratio between the sub-peaks and the

depolarization was computed using the scalogram to identify

its occurrence. These relative ratios were database specific as
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Fig. 3: Time-scale plane depiction of the GP (with the

illustration of the envelope)

they were derived using a subset of the MIT database. Based

on the sub-peak and depolarization analysis, a sub-peak was

identified if it satisfied Equation 2.

δ1 ≤
W̃fsub−peak

W̃fdepol
×100 ≤ δ2 (2)

The terms W̃fsub−peak and W̃fdepol are the sub-peak and

depolarization wavelet magnitudes respectively. The thresh-

olds δ1 and δ2 were obtained experimentally by analyzing

the 14 ECGs that had these patterns occurring. Once all the

sub-peaks were identified for a particular depolarization, then

a classification of the depolarization was made based on the

presence (two sub-peaks for LP1) or absence (no sub-peaks

for LP2) of the sub-peaks.

In the case of the GP, the envelope was first detected using

the real and phase scalograms. Within the envelope, the depo-

larization to envelope ratio was obtained from the scalogram

for each depolarization and then an average depolarization

to envelope ratio was calculated. The GP was identified if

the average ratio satisfied Equation 3.

δ3 ≤

∑N

n=1

W̃fdepol,n

W̃fenvelope

×100

N
≤ δ4 (3)

From Equation 3, W̃fdepol,n is the nth depolarization

magnitude, W̃fenvelope is the envelope magnitude and N

is the total number of depolarizations identified within the

envelope. The thresholds δ3 and δ4 were also obtained

experimentally by analyzing the 14 ECGs that had the GP oc-

curring. Using this method, if the ratio for the local patterns

or global pattern were within their respective thresholds, then

the three identified patterns were automatically detected. This

information could be used to represent the arrhythmia as a

percentage of distribution for these patterns.

III. RESULTS AND DISCUSSION

In order to validate the automated detection process, the 14

ECG segments were manually validated with the patterns that

were detected automatically. The number of automatically

detected patterns were verified against manually identified

patterns to determine the detection accuracies of each pattern

using the proposed method. The detected patterns were

averaged for the 14 ECG segments as occurrence per minute.

The detection accuracies for the patterns are given in Table

I. A detection accuracy of 73.3%, 75.0% and 86.6% were

achieved for LP1, LP2, and the GP respectively. This iden-

tification was also verified by two independent observers on

a subset of the database and achieved an overall accuracy of

70.5% and 71.5% respectively.

The above validated automated detection process was

applied to compute the distribution of these patterns for all

the 14 ECG segments. To demonstrate that the distribution

of these patterns are different for the two types of ventricular

arrhythmias and also that they differ within VF, we per-

formed two separate comparisons. The first comparison, we

segregated the 14 ECG segments into the 9 VF and 5 VT

segments and computed the percentage of energy captured by

each pattern. Figure 4 shows the average energy captured by

each pattern for VF and VT segments. Although VT and VF

classification can be performed using many existing methods,

the motivation here is to highlight the differences between

the distribution in the occurrence of the proposed patterns

between the ventricular arrhythmias. The mean and standard

deviation for the patterns are highlighted in Table II.

Analyzing the differences in the pattern distribution among

the ventricular arrhythmia group (VT and VF), it is evident

that LP1 and GP can easily discriminate between VT and

VF. Observing the occurrence of these pattern in VT and VF,

LP1 seems to occur more during VF, as shown in Figure 4a,

and LP2 seems to occur more in VT, as shown in Figure

4b. It should be noted that there are some similarities in

the occurrence of the GP in both VT and VF (as observed

in Figure 4c). This is likely the result of the difficulty in

distinguishing the GP from torsade de pointes, which has

been previously reported [13]. While monomophic VT may

not have LP1 or GP occurring, it is possible for these patterns

to occur in polymorphic VT, which explain the observations

of these patterns in the VT samples analyzed.

TABLE I: Automated Pattern Detection Validation Accura-

cies Based on Average Occurrence per Minute

Pattern Manual Automated % Accuracy

LP 1 16.09 11.79 73.3%

LP2 85.56 64.17 75.0%

GP 11.83 10.24 86.6%

TABLE II: Group Mean and Standard Deviation for Each

Pattern

Group VT VF

LP1 3.0% (± 2.2%) 7.6% (± 4.2%)

LP2 39.0% (± 27.1%) 27.1% (± 11.5%)

GP 29.4% (± 22.6%) 42.3% (± 19.2%)

In the second comparison, our intention was to demon-
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Fig. 4: Pattern comparison between VT and VF
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(a) VF Sample 1

1 2 3
0

10

20

30

40

50

60
Pattern Percentage for VF Sample 2

Pattern (Local Pattern 1 to 2 to Global Pattern)

P
e
rc

e
n
ta

g
e
 o

f 
E

n
e
rg

y

(b) VF Sample 2
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(c) VF Sample 3
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(d) VF Sample 4

Fig. 5: Pattern Distribution Among Four VF Samples

strate that even within the same type of ventricular arrhyth-

mia, there are variations in the distribution of these patterns.

In order to demonstrate this, we have presented the histogram

of the three patterns for four different VF segments.

Upon closely analyzing pattern distributions among the

VF samples in Figure 5, we note that VF Sample 1 and

VF Sample 3 (Figures 5a and 5c) have similarities in the

distribution of the patterns and likewise VF Sample 2 and

VF Sample 4 (Figures 5b and 5d) have similarities in the

distribution of the patterns. VF sample 1 and VF sample

3 (Figure 5a and 5c) have a relatively low occurrence of

LP2 and GP but a relatively higher occurrence of LP1 when

compared with VF sample 2 and VF sample 4. Therefore,

this information might be highly valuable if these patterns

could be associated with underlying pathologies.

The demonstration that the proposed approach could high-

light the differences between and within ventricular arrhyth-

mias using single channel ECG signal patterns opens up

the possibilities of characterizing ventricular arrhythmias in

terms of signal morphologies. These patterns could pro-

vide an indication of the state of the heart or nature of

pathologies that could assist clinicians to provide targeted

diagnosis and treatment. If the link between such reoccurring

signal patterns and the spatio-temporal organizational centers

(which needs high resolution 2D mapping) during ventricular

arrhythmias could be established this may motivate catheter

ablation based therapies where usually the clinicians only

has access to a few electrogram channels.

IV. CONCLUSIONS

We have presented three commonly reoccurring signal

patterns in ECG during ventricular arrhythmias and a wavelet

based technique for automatically identifying these patterns.

Identifying and analyzing the distribution of these patterns

could assist clinicians in associating pathologies and sub-

classifying the affected population which may lead to better

targeted diagnosis and treatment. By creating a knowledge

base of ventricular arrhythmia signal patterns, an expert

system could be developed that could assist in characterizing

ventricular arrhythmias. Future work involves testing the

proposed patterns in a larger database and perform subgroup

classifications in associating clinical information to the oc-

currence of signal patterns.
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