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Abstract

Implantable high-accuracy, and low-power seizure
detection is a challenge. In this paper, we propose a
cascade architecture to combine different seizure detec-
tion algorithms to optimize power and accuracy of the
overall seizure detection system. The proposed archi-
tecture consists of a cascade of two seizure detection
stages. In the first-stage detector, a lightweight (low-
power) algorithm is used to detect seizure candidates
with the understanding that there will be a high num-
ber of false positives. In the second-stage detector—
and only for the seizure candidates detected in the first
detector—a high-accuracy algorithm is used to elimi-
nate the false positives. We show that the proposed
cascade architecture can reduce power consumption of
seizure detection by 80% with high accuracy, offering a
suitable option for real-time implantable seizure detec-
tors.

1. INTRODUCTION

Seizure detection on implantable medical devices
is a key step to provide long-term seizure monitoring
and treatment solutions for many patients with epilepsy.
Yet achieving implantable solutions with robust detec-
tion capabilities is still a challenge [1].

Although, a wide variety of algorithms ranging
from simple algorithms such as Line-length [2] to so-
phisticated algorithms based on machine learning [3] or
spectral power [4] have been developed for seizure de-
tection, not all of these algorithms are practical for real-
time implantable medical devices due to their power,
computational and/or space complexity requirements.
Most notably, recent studies [5–8] using single/multiple
level count-based methods, inter-event based methods
and several time-domain features like line-length, en-
ergy, and variance, show promising performance us-
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ing low power on real-time implantable devices. How-
ever, these low power, computationally-efficient (i.e.,
lightweight) seizure detection algorithms use only time-
domain features including indirect frequency features
such as count-based, and inter-event due to the compu-
tational complexity of frequency-domain feature com-
putation. Therefore, these lightweight algorithms cause
more false positives than algorithms that use both time
and frequency-domain features (i.e., high-accuracy al-
gorithms). Thus, it is hard to identify a single algorithm
that is both low power, and provides high accuracy (i.e.,
low false positive rate).

In this paper, we propose a cascade architecture for
seizure detection which utilizes the best properties of
these two sets of algorithms, namely the lightweight and
high-accuracy seizure detection algorithms.

For the first stage, the proposed method uses a
simple seizure detection algorithm to distinguish non-
seizure signals from seizure-candidate signals, which
includes both actual seizures and artifacts. The sec-
ond stage operates only when the first-detector detects
seizure-candidates. The proposed cascade seizure de-
tection method makes it possible to implant sophisti-
cated seizure detection algorithm with only 20% of its
original power consumption. Therefore, the proposed
method is optimized for implantable medical devices.

It should be noted that many seizure detection ar-
chitectures have a pre-filtering stage such as a discrete
wavelet transform or band-pass filtering to attenuate ar-
tifacts before the signal is applied to the seizure detec-
tion algorithms to reduce the false positive rate [9]. Be-
sides the high power consumption of these pre-filtering
architectures, the proposed cascade architecture differs
from the pre-filtering approaches by having a seizure
detector in the first stage (i.e., first detector), which
eliminates a significant portion of the data to be pro-
cessed by the second detector.

In the next section, we introduce the proposed
seizure detection methods using the cascade architec-
ture. In Section 3, simulation results and the algorithm
complexity based on clock cycles for real-time process-
ing are analyzed. Section 4 presents conclusions and
future works.
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Figure 1: (a) Block diagram for the proposed cascade
architecture for seizure detection. (b) Illustration of the
seizure detection method using cascade architecture.

2. Cascade Seizure Detection Methods

The block diagram of the proposed cascade archi-
tecture for seizure detection is shown in Fig. 1(a). The
first detector—a lightweight seizure detector— contin-
uously monitors the Electroencephalography(EEG) sig-
nal to filter out a large portion of the data, and identifies
seizure candidates for further evaluation. The input sig-
nal to the first detector can also be down-sampled de-
pending on the algorithm used (Section 2.1). The sec-
ond detector—a high-accuracy seizure detector— is not
activated until the first detector detects a seizure candi-
date. Once the first detector detects seizure candidates,
the second detector starts to operate to evaluate whether
the seizure candidate is an actual seizure or not. The
second detector only inspects the data starting from the
time the seizure candidate is detected (Fig. 1 (b)). If the
candidate seizure is classified as a seizure, then this is
reported, otherwise the candidate is discarded. In either
case, as soon as the second detector completes its eval-
uation, the second detector is turned off. The seizure
detection latency increases slightly due to the cascade
seizure detection architecture as given in Section 3.

We propose using simple time-domain features like
line-length or area for the first seizure detector because
the amplitude variation in seizure status is the most
common distinguishable feature. For the second detec-
tor, we propose using frequency-domain features like
spectral entropy or a wavelet transform to eliminate
false detections.

In this paper, we use the area feature and multi-
window count method for the first detector. For the sec-
ond detector, we propose to use a multi-window count

method and spectral entropy. These algorithms are sum-
marized in the following sections. Further details of
these algorithms can be found in [5, 10, 11].

2.1. Area-based Seizure Detection

Area [11] is a time-domain feature for calculating
the average absolute amplitude of the signal as shown
in Eq. (1).

Area(k) =
1
N

N

∑
i=1
|x[i+N(k−1)]| (1)

where N is the window size and x is the sampled input
data. A large deviation (i.e., above a certain threshold)
in the computed value of area in a short-term window
with respect to the long-term average is considered as a
seizure indicator.

An area-based seizure detection requires only very
simple computational primitives such as addition, shift,
and comparison, and thus has low computational com-
plexity and power consumption. Furthermore, its ac-
curacy stays virtually the same even for down-sampled
data, which further reduces the power needs of this al-
gorithm, making area-based seizure detection suitable
for the first detector. In this work, area is calculated af-
ter down-sampling input data up to 1/16th of the actual
sampling rate.

2.2. Multi-Window Count Seizure Detection

The count-based seizure detection algorithm using
single window count (SWC) is proposed as an efficient
method for seizure detection in [5]. The SWC method
counts the number of samples whose amplitudes fall in
between a positive threshold and a negative threshold in
a given time window. A small sample count below a
certain threshold indicates a seizure.

We slightly modified the count-based method as
shown Fig. 2 to reduce number of incremental count
operations and false detections by partitioning a sin-
gle window into small windows. The multi-window
count (MWC) method partitions a single window with
k small windows and counts only when the samples are
above the positive threshold (Cup) and below the neg-
ative threshold (Cdn). This can reduce the number of
incremental count operations.

If the Cup or Cdn has zero value in a small window
data set, we reset all the count values to zero, because
a zero in the positive value (negative value) shows that
the input signal is biased towards negative values (pos-
itive values). The long-term sample-counts Cs can be
determined by iterating this process k times. Since, we
count samples that fall out of thresholds, Cs is compared
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Figure 2: Flow chart for the multiple windows count-
based method.

with pre-defined threshold Nth =N−Cth, where N is the
number of samples in a single window and Cth is the
same parameter as in [5]. Therefore, both short-term
and long-term sample-counts are considered. MWC is
also suitable as the first detector, since it only requires
a small number of comparison and addition operations.
Yet, MWC shows better FPh (number of false positives
per hour) compared to SWC.

2.3. Spectral Entropy-Based Seizure Detection

Spectral Entropy (SPE) [10] provides a frequency
domain measure of signal complexity. During a seizure,
signals show rhythmic synchronized features causing a
decrease in SPE. Thus, a low SPE value can be consid-
ered as a seizure indicator. SPE can be calculated from
the following 3 steps. First, calculate power spectrum
P( fi) from the Fourier transform X( fi),

P( fi) = |X( fi)|2 (2)

where X( fi) is frequency amplitude at fi. Then, the
power spectrum is normalized as shown in Eq. (3)

Pn( fi) =
P( fi)

∑
f2
fi= f1

P( fi)
(3)

Finally, SPE within the frequency range [ f1, f2] is com-
puted as follows.

S[ f1, f2] =
f2

∑
fi= f1

Pn( fi) log
1

Pn( fi)
(4)

In this work, SPE is calculated after down-
sampling input data up to 1/4th of the actual sampling
rate. A 64-point Radix-2 FFT architecture is used for
the Fourier transform. Since, calculating the exact log
value is not needed, we can substitute log calculation
with additions, comparisons and shift operations.

3. Simulation and Results

The proposed cascade seizure detection architec-
ture was evaluated against recordings from 7 patients in
the CHB-MIT scalp EEG database [12]. These record-
ings last for 272 hours, and include 34 seizures. The
data is sampled at 256 Hz.

Table 1 shows the performance and complexity of
individual seizure detection algorithms. The clock fre-
quency is determined by calculating the number of cy-
cles required for the processing of 1 second worth of
data per channel (acquisition, calculations and serial
memory access) on a 16-bit microcontroller (MSP430,
Texas Instruments) in real-time. For an exact compar-
ison, we apply the same window size (5 sec), i.e., the
algorithm decides whether there is a seizure in or not
only once for each window.

Table 1: Performance comparison of individual seizure
detection algorithms for real-time processing.

Algorithm Sensitivity FPh Latency fclk
[sec.] [MHz]

Area 34/34 11.82 9.87 0.06
SWC [5] 34/34 11.66 10.14 0.80
MWC 32/34 3.77 12.12 0.80
SPE 32/34 2.69 16.11 5.48

The sensitivity of all the seizure detection algo-
rithms in Table 1 is high. However, the hourly false pos-
itive rate varies highly, and as expected, the hourly false
positive rate of an algorithm decreases as the required
clock frequency of the algorithm and thus its power
consumption increases. This conclusion confirms that
although high sensitivity is common in even the sim-
plest algorithms, for high selectivity the price paid is an
increase in power consumption.

Table 2 shows the performance and complexity for
the proposed cascade architecture. Here, the sensitiv-
ity is still high, yet, the hourly false positive rate drops
significantly. Although, the required clock frequency is
still higher for a lower hourly false positive rate, com-
pared to the performance of the individual algorithms,
both the FPh and the required clock frequency are much
lower. More specifically, the proposed cascade architec-
ture has over 94% sensitivity, with 0.9 false positive per
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hour running on an average clock frequency of 830 kHz.
Furthermore, the required clock frequency in the cas-
cade seizure detector is close to the first detector clock
frequency as shown Table 1, since the second detector
is rarely on.

Table 2: Performance of the proposed cascade architec-
ture for seizure detection for real-time processing.

Algorithm Sensitivity FPh Latency fclk
[sec.] [MHz]

Area+MWC 32/34 2.21 12.96 0.074
Area+SPE 33/34 1.33 17.49 0.150
MWC+SPE 32/34 0.90 18.52 0.830

The average clock frequency of cascade seizure de-
tector can be calculated using Table 1. In Area+MWC
case, Area detects about 12 seizure candidates per hour,
therefore, the second seizure detector MWC operates
only 12 times per hour. Therefore, the average fclk can
be calculated as follow.

fclk =
3600× fclk1 +FPh1×N2× fclk2

3600
(5)

where fclk1 , fclk2 are the average clock frequency for the
first detection algorithm and the second detection algo-
rithm, FPh1 is false positive per hour of the first de-
tection algorithm and N2 is window size for the second
detection algorithm. Therefore, we can achieve more
than 80% reduction in power consumption with almost
the same accuracy, better false positive rate, but with
approximately 4 sec additional detection latency.

4. Conclusion and Future Works

For the realization of implantable medical devices,
we need to optimize from algorithm level to hardware
design level. The proposed seizure detection methods
using a cascade architecture provide a trade-off between
detection latency and performance and low power. The
proposed seizure detection method improves the perfor-
mance by using two different features and also reduces
power consumption by using a turn-on/off scheme at
the second detector. We show that better performance is
obtained when using two different features rather than
one single feature. Further, we show that the proposed
seizure detection methods using cascade architecture
can save up to 80% power consumption with reason-
able latency. Therefore, the proposed seizure detection
methods are suitable for implantable medical devices.
The proposed method is especially suitable for wireless
seizure data monitoring which is less sensitive to detec-
tion latency. In our future work, we will investigate our

cascade architecture with different window sizes, and
new features to reduce FPh.

References

[1] A. Baruchin, “Implantable devices could detect and halt
epileptic seizures,” Scientific American, Jul. 2012.

[2] R. Esteller, J. Echauz, T. Tcheng, B. Litt, and B. Pless,
“Line length: an efficient feature for seizure onset de-
tection,” in Engineering in Medicine and Biology Soci-
ety, 2001. Proceedings of the 23rd Annual International
Conference of the IEEE, vol. 2, 2001.

[3] A. Shoeb, A. Kharbouch, J. Soegaard, S. Schachter, and
J. Guttag, “A machine-learning algorithm for detecting
seizure termination in scalp eeg,” Epilepsy and Behav-
ior, vol. 22, Supplement 1, pp. S36 – S43, 2011.

[4] Y. Park, T. Netoff, X. Yang, and K. Parhi, “Seizure de-
tection on/off system using rats’ ecog,” in Engineering
in Medicine and Biology Society, 2012 Annual Interna-
tional Conference of the IEEE, 28 2012-sept. 1 2012.

[5] M. Safi-Harb, M. T. Salam, D. K. Nguyen, and
M. Sawan, “An implantable seizure-onset detector based
on a dual-path single-window count-based technique for
closed-loop applications,” Emerging and Selected Top-
ics in Circuits and Systems, IEEE Journal on, vol. 1,
no. 4, pp. 603 –612, dec. 2011.

[6] M. Salam, M. Sawan, and D. K. Nguyen, “A novel
low-power-implantable epileptic seizure-onset detec-
tor,” Biomedical Circuits and Systems, IEEE Transac-
tions on, vol. 5, no. 6, pp. 568 –578, dec. 2011.

[7] S. Raghunathan, S. K. Gupta, M. P. Ward, R. M. Worth,
K. Roy, and P. P. Irazoqui, “The design and hardware
implementation of a low-power real-time seizure detec-
tion algorithm,” Journal of Neural Engineering, vol. 6,
no. 5, p. 056005, 2009.

[8] S. Raghunathan, S. K. Gupta, H. S. Markandeya,
K. Roy, and P. P. Irazoqui, “A hardware-algorithm co-
design approach to optimize seizure detection algo-
rithms for implantable applications,” Journal of neuro-
science methods, vol. 6, no. 5, pp. 106 –17, Aug 2010.

[9] S. Raghunathan, A. Jaitli, and P. P. Irazoqui, “Multistage
seizure detection techniques optimized for low-power
hardware platforms,” Epilepsy and Behavior, vol. 22,
Supplement 1, no. 0, pp. S61 – S68, 2011.

[10] B. Greene, S. Faul, W. Marnane, G. Lightbody, I. Ko-
rotchikova, and G. Boylan, “A comparison of quantita-
tive eeg features for neonatal seizure detection,” Clinical
Neurophysiology, vol. 119, no. 6, pp. 1248 – 1261, 2008.

[11] F. T. Sun, M. J. Morrell, and R. E. W. Jr., “Responsive
cortical stimulation for the treatment of epilepsy,” Neu-
rotherapeutics, vol. 5, no. 1, pp. 68 – 74, 2008.

[12] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Haus-
dorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B.
Moody, C.-K. Peng, and H. E. Stanley, “Physiobank,
physiotoolkit, and physionet: Components of a new re-
search resource for complex physiologic signals,” Cir-
culation, vol. 101, no. 23, pp. e215–e220, 2000.

1008


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

