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Abstract—Surface electromyography (sEMG) is an important 

measurement for monitoring exercise and fitness. A wireless 

Bluetooth transmission sEMG measurement system with a 

sampling frequency of 2 KHz is developed. Traditional muscle 

fatigue is detected from the median frequency of the sEMG 

power spectrum. The regression slope of the linear regression of 

median frequency is an important muscle fatigue index. As 

fatigue increases, the power spectrum of the sEMG shifts toward 

lower frequencies. The goal of this study is to evaluate the 

sensitivity of empirical mode decomposition (EMD) quantifying 

the electrical manifestations of the local muscle fatigue during 

exercising in health people. We also compared this method with 

the raw data and discrete wavelet transform (DWT). Five male 

and five female volunteers participated. Each subject was asked 

to run on a multifunctional pedaled elliptical trainer for about 30 

minutes, twice a week, and there were a total of six recording 

times for each subject with a wireless EMG recording system. 

The results show that sensitivity of the highest frequency 

component of EMD is better than the highest frequency 

component of DWT, and raw data. 

I. INTRODUCTION 

Muscle fatigue is thought of as a loss of required or 
expected force and has been an attractive research issue for a 
long time. The nature of muscle fatigue and its relation to 
muscle activity have been studied[1]. Spectral parameters 
such as the mean frequency (MNF) and the median frequency 
(MF) derived from the sEMG power spectrum are widely used 
to detect static and dynamic muscle contractions [2]. The 
Fourier transform is one of methods used to obtain the power 
spectrum of a signal. However, within the analysis window, 
the signal must be stationary or exhibit a periodic frequency; 
otherwise, the resulting spectrum will make little sense. 
Dimitrova et al. proposed new spectral indices of muscle 
fatigue (FInsmk) that perform better than the traditional MNF 
and MF[3]. Wavelet-based spectra and derived spectrum 
features have been used to compare the traditional power 
spectrum–derived MNF and MF performance for fatigue 
quantification. 
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Recently, a novel nonstationary and nonlinear signal 
processing technique has been proposed, known as empirical 
mode decomposition (EMD). EMD was introduced by Huang, 
and it has been widely used for nonlinear signal analysis[4]. 
The principle of EMD is based on a decomposition derived 
from the data, and EMD is useful in the analysis of nonlinear 
and nonstationary time series signals. With an iterative 
decomposition of signals, EMD separates the full signal into 
ordered elements with frequencies ranging from high to low in 
each intrinsic mode function (IMF) level. The filter bank-like 
property of EMD has been widely applied in many fields, such 
as to the sound analysis of an infant crying to assess a 
newborn’s pain [5] and classification of ship-radiated 
underwater sound [6]. Weather-related issues are the main 
application for EMD scholars [7]. Another major application 
of EMD is biomedical signal analysis [8-9]. The decomposed 
IMFs were further extracted with the power or entropy 
approach to analyze the nonstationary biosignals for noise 
reduction and for feature extraction[10]. The main topics of 
concern for EEG—the detection of epileptic seizure [11] and 
evoked potential extraction [12] have been investigated by 
EMD with impressive results. Heart rate signal analysis is 
another major application of EMD. Reconstructions of 
selected IMFs of heart beat intervals were used for noise 
filtering [13], feature extraction for discrimination from local 
anesthesia [14], fetal heart rate monitoring [15], and 
ventricular fibrillation detection [16]. Modulation of 
respiratory sinus arrhythmia between respiratory and heart 
beat signal is also achieving promising results. EMD had been 
applied to extract the MNF of sEMG as a muscle fatigue index 
[17]. Srhoj et al. have extracted the MF from selected IMFs of 
sEMG recorded over quadriceps muscles during cyclic 
dynamic contractions [18]. Their results showed that 
HHT-derived spectral and linear regression parameters were 
consistent and more reliable than those obtained with the 
short-time Fourier transform and the wavelet transform.  

To reduce the nonstationary problem of the long EMG 

segment, this study investigates the EMD performance for 

muscle fatigue spectrum estimation and compares it with 

discrete wavelet transform (DWT) and EMD. The MFs were 

used as fatigue indices during dynamic contractions. There 

were 10 volunteers who joined this experiment; they ran in a 

multifunctional pedaled elliptical trainer. A self-designed 

wireless device was used to record the sEMG signal of the 

vastus lateralis in the left leg of each volunteer. Each subject 

performed six experiments in three weeks. Furthermore, the 

comparison of the different decomposition methods revealed 
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that the IMF 1 component of EMD was best for evaluating 

muscle fatigue. 

II. METHODS 

A. sEMG recording and subjects 

A wireless sEMG recording device developed by the 
authors was worn on the left lateral waist of the subject to 
measure the sEMG signal. The gain of the device is 1000, and 
the bandwidth is 30 Hz to 1000 Hz to avoid the aliasing 
problem. This device is based on the microcontroller 
MSP430-F5438 as the core structure, which is a 12-bit 
analog-to-digital converter with a sampling rate of 2000 Hz. 
The digital EMG signal is transferred by a Bluetooth chip to a 
remote server. A Visual Basic-based interface system is used 
to display and store the digital EMG data in real time [19]. 

There were ten volunteers involved (5 male and 5 female), 
with ages ranging from 19 to 27 years. Subjects were required 
to run in a multifunctional pedaled elliptical trainer (Johnson 
E8000). We measured the vastus lateralis of the left leg. The 
surface electrodes used for the EMG recording were Ag/AgCl 
with a 10 mm diameter on self-adhesive supports. The bipolar 
electrodes were placed over the midline of the muscle belly 
between the motor point and the myotendinous junction, and 
the inter-electrode distance was 5 cm.  The electrode 
arrangement ensured negligible crosstalk between adjacent 
muscles.  The positions of the electrodes for each subject were 
recorded, and the electrodes were placed at the same position 
in the subsequent experiments. 

B. Experimental procedure for evaluating muscle fatigue 

The muscle fatigue experiment is based on the 
following procedures.  

Step 1: The subjects are required to wear the wireless sEMG 
device. Alcohol is used to clean the surface, and electrolytic 
gel is smeared on the electrodes to decrease the contact 
impedance. Athletic tape is used to fix the electrodes and so 
avoid movement of the electrodes. Before data collection, a 
consent form was signed by each subject. 

Step 2: There are three load levels in the multifunctional 
pedaled elliptical trainer, L2, L4 and L6, with L2 being light 
and L6 being heavy. The speed range of L2 is 55-60 steps per 
minute (SPM) for males and 50-55 SPM for females. The 
speed range of L4 is 60-70 SPM for males and 55-65 SPM for 
females. The subjects are required to run at their maximum 
speed until exhaustion for L6, which has a faster speed range 
than L4. A ten minute session is required for both L2 and L4. 
The average duration for L6 was also approximately 10 
minutes. In the pre-experiment, the subjects tested the speed 
range and chose the most appropriate speeds for the L2 and L4 
levels, separately, and ran at their maximum speed for the L6 
level. These speeds were recorded for every subject. In the 
experiments, the subjects ran at their self-selected speeds 
during the experimental procedure. 

Step 3: Each subject was recorded twice a week at the same 
time, and there were a total of six recording times for each 
subject. 

C. EMD algorithm 

The EMD algorithm used in this study comprised the 
following steps [4]: 

Step 1: Extrema (maxima and minima) of the signal, x(t), are 
identified. 

Step 2: Upper and lower envelope of the extreme point is 
developed. 

Step 3: Mean function of the upper and lower envelope, m(t). 

Step 4: Difference signal d(t)=x(t)-m(t). 

Step 5: If d(t) becomes a zero-mean process, then the iteration 
stops, and d(t) is a first IMF (IMF1), called c1(t); otherwise, go 
to step 1 and replace x(t) with d(t). 

Step 6: Residue signal r(t)=x(t)− c1(t). 

Step 7: Replace x(t) with r(t) and repeat the procedure from 
steps 1 to 6 to obtain the second IMF (IMF 2), called c2(t). To 
obtain cn(t), continue steps 1 to 6 after n iterations. The 
process is stopped when the final residual signal r(t) is 
obtained as a monotonic function. 

Now, the original signal can be represented as: 
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Often, we can regard r(t) as cn+1(t). 

D. Discrete wavelet analysis 

Assuming the raw sEMG signal is x[n], the DWT 
decomposition involves the following filtering process: 
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where A0[n]= x[n] and Aj[n] and Dj[n] indicate the coarse and 
detailed sequences, respectively, after the jth decomposition. 
The variable h[n] represents the half-band low-pass filter, and 
g[n] represents the half-band high-pass filter. The original 
signal is decomposed from the high-frequency component to 
the low-frequency component as a combination of Aj[n] and 
Dj[n]. For example, if the decomposition level is 5 (j=5), then 
the original signal can be represented as:  

x[n]=D1[n]+D2[n]+D3[n]+D4[n]+D5[n]+A5[n].                (4) 

E. Muscle signal processing 

The recorded sEMG is divided into segments, and a Fast 
Fourier Transform is performed. Each segment’s MF is 
extracted. The MF is defined as the frequency at which the 
accumulated spectrum energy is half of the total spectrum 
energy, as shown in equation (5): 
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The sEMG segment window size is 30 seconds, and the step 
size is 15 seconds. There is one MF for each sEMG segment. 
A further linear regression analysis is applied to the MF series 
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during the three stages of the muscle fatigue examinations. 
The linear regression equation is defined as: 

bAxy  ,                                      (6)               
where y is estimated as the MF, x is the time interval, A is the 
regression slope and b is the bias. The greater the muscle 
fatigue, the smaller the slope [20]. We also used the 
correlation coefficient (R) to represent the stability of sEMG 
in terms of muscle fatigue. It is well known that the MF shifts 
toward lower frequencies as a muscle fatigues. Parameter R 
and A were used as indexes of the muscle fatigue.  
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F. Statistics 

In this study, the SIGMAPLOT software package was 
used to conduct the data analysis. Descriptive statistics were 
applied to subjects’ personal information and muscle fatigue 
parameters (regression slope, A, and correlation coefficient, 
R). The data were represented as the mean (standard 
deviation). Statistical testing of the muscle fatigue parameters 
obtained from the raw data and the different decomposition 
methods was performed using t-tests. The significance level 
for the p value was set at 0.05. 

III. RESULTS 

DWT and EMD were used to decompose the sEMG 
signal. The lower IMF and the lower wavelet detail function 
both correspond to higher-frequency components. Table 1 
shows the analysis results of one experiment for the raw data 
and the decomposed signals of the other two methods for the 
entire 30 minute experiment. The MF slope of the raw sEMG 
is -0.012 Hz/s. For the DWT decomposition, the absolute MF 
slope of the first detail component is larger than the rest of the 
decomposition (D1, slope = - 0.03 Hz/s). This is also true for 
EMD: the absolute MF slope of the first IMF is significantly 
larger than that of the other IMFs (IMF1 of EMD, slope = - 
0.049 Hz/s. In the following analysis, only the D1 component 
of the DWT and the IMF1 component of the EMD were 
chosen for further MF estimation and regression analysis. The 
absolute MF slope of the raw data and the high-frequency 
components of the three methods is EMD (0.049 Hz/s) > 
DWT (0.030 Hz/s) > raw EMG (0.012 Hz/s). Figure 1 shows 
the MF distributions of the raw data, the D1 component of the 
DWT, and the IMF1 components of the EMD during a 
complete experiment. 

TABLE I.  TYPICAL REGRESSION RESULTS FOR THE RAW DATA 

AND THE DECOMPOSED SIGNALS OF THE DWT AND EMD, 

 Slope Hz/s Coefficient MF (Hz) 

Raw -0.012 0.859 269.6 (5.8) 

DWT, 

D1 
-0.030 0.894 665.7 (14.5) 

D2 -0.001 0.365 344.6 (1.4) 

D3 -0.001 0.218 184.6 (1.3) 

EMD -0.049 0.865 474.0 (24.5) 

 Slope Hz/s Coefficient MF (Hz) 

IMF1 

IMF2 -0.025 0.874 269.7 (12.4) 

IMF3 -0.010 0.813 167.7 (5.1) 

 

TABLE 2. STATISTICAL RESULTS OF THE MF SLOPE OF THE RAW 

DATA AND THE DECOMPOSITION METHODS WITHIN THE THREE 

LEVELS AND FOR THE ENTIRE EXPERIMENT. THE DATA ARE 

REPRESENTED AS THE MEAN (SD). 

Level RAW 

(n=60) 

DWT 

(n=60) 

EMD 

(n=60) 

L2 -0.0164* 

(0.0144) 

-0.0232* 

(0.0176) 

-0.0456* 

(0.0356) 

L4 -0.0125* 

(0.0100) 

-0.0209* 

(0.0157) 

-0.0362* 

(0.0302) 

L6 -0.0193* 

(0.0154) 

-0.0276* 

(0.0264) 

-0.0501 

(0.0503) 

All -0.0197* 

(0.0128) 

-0.0296* 

(0.0153) 

-0.0594* 

(0.0364) 
SD is standard deviation, ALL represents the entire experiment, P<0.05*; 

In Table 2, the MF slope of the raw data is also 
significantly different from the highest-frequency components 
of the other two decomposed methods. The ranges of the 
absolute MF slope value are also EMD> DWT> raw EMG 
within the three loading levels and the complete experiment. 

IV. DISCUSSIONS AND CONCLUSION 

In Table 1, the absolute MF slope of the 
highest-frequency component of the different decomposition 
methods is significantly larger than the rest of the 
decomposition. The results show that the intrinsic information 
about muscle fatigue could be embedded in the 
high-frequency portion of the sEMG. Therefore, in this study, 
we only used the highest-frequency component of the different 

decomposition methods to evaluate the muscle fatigue. 

From the results, EMD has been proven to 
quantify the electrical manifestations of muscle fatigue at the 
local muscle being better than the DWT and raw data. The 
reason could be that EMD suits the nonlinear signal 
decomposition of the intrinsic mode function. Although EMD 
acted as a filter-bank, there was no strict bandwidth restriction 
with the IMF. The frequency range of each IMF level is 
adaptive, depending on the raw signal content. The DWT 
decomposition is based on the successive filtering of the 
symmetric half-band high-pass and low-pass filters. The 
frequency range of the more detailed component is nearly 
twice that of the adjacent less detailed component. The EMD 
approach can extract major high-frequency components in the 
first IMF level with better adaptation than wavelet transforms. 
Although the MF of the D1 component of the DWT is larger 
than the IMF 1 component of the EMD, the absolute MF slope 
of the IMF 1 component of the EMD is larger than the D1 
component of the DWT with the time course of fatigue.  

Finally, we used our designed wireless device to record the 
sEMG and quantify the electrical manifestations of muscle 
fatigue at the local muscle. We found that the intrinsic fatigue 
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information of the sEMG could be embedded in the 
high-frequency component. Two decomposed methods, DWT 
and EMD, were used to extract this component. The 
preliminary results revealed the potential of EMD for sEMG 
signal processing.  
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Figure 1. The distribution of MF during a complete experiment, (a) Raw data, 
(b) D1 of DWT, (c) IMF1 of EMD. 
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