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Abstract— A methodology for optimum sampling frequency
selection for wavelet feature extraction is presented. We show
that classification accuracy is enhanced by adequately select-
ing the parameters: number of decomposition levels, wavelet
function and sampling rate. A novel approach for selecting
the parameters based on particle swarm optimization (PSO)
is presented. Experimental results conducted on two different
datasets with support vector machine (SVM) classifiers confirm
the superiority and advantages of the proposed method. It
is shown empirically that the proposed method outperforms
significantly the existing methods in terms of accuracy rate.

I. INTRODUCTION

Discrete wavelet transform (DWT) has been widely used

for feature extraction from biomedical signals, e.g., elec-

trocardiograms (ECG) [1], phonocardiograms (PCG) [2],

electroencephalograms (EEG) [3], microelectrode recordings

(MER) [4], among others. Ranging from applications in

denoising, compression and classification. In several works

have been found that classification accuracy depends on the

wavelet function [5], the decomposition levels [6] and the

sub-bands selection [7].

Wavelet function can be selected from a list of previously

designed wavelet functions with different orders, such as,

Daubechies, Symlet or Coiflet [5]. Another approach is to

customized the wavelet function to the problem at hand, by

means of stochastic optimization algorithms [4], [1].

On the other hand, the decomposition levels are related

to the number of features extracted from wavelet transform

and sub-band division of spectral content. Finally, features

extracted from the wavelet transform can be optimized by

a process of feature selection to avoid redundant or useless

features. An adequate selection of these parameters must be

performed to ensure a high classification accuracy. For all

possible combinations of these parameters a different feature

space is obtained. Also, the feature space depends on the kind

of measures used as features, like, statistical moments [8],

information measures [9], among others. Features extracted

from wavelet transform are highly problem-dependent.

In this paper, we show how the sampling rate in the DWT

feature extraction stage, greatly affects signal classification

performance. Thus, sampling rate is included in the DWT

feature extraction for signal classification. Sampling rate

has been previously used to enhance signal denoising and
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compression. The former is presented in [10], an optimal

sampling rate is selected to improve the reconstruction of

Partial Discharge signals. The latter is presented in [11],

optimal sampling frequency is selected for different examples

of signal compression.

Additionally to sampling rate optimization, the number of

decomposition levels and the wavelet function are optimized

by particle swarm optimization (PSO). PSO has successfully

been used in wavelet transform parameter selection and

wavelet function customization [1].

This paper is organized as follows: Section II outlines

brief review of theoretical methods. The proposed method

is presented in section III. Finally, in section IV, results and

final discussion are given.

II. METHODS

A. Discrete Wavelet Transform

Discrete wavelet transform (DWT) is calculated perform-

ing the discrete convolution between the signal (x) and two

filters, one filter is a high pass discrete function gn known

as mother wavelet and the other one is a low pass filter

hn known as father wavelet. Coefficients calculated from

each convolution are downsampled [12], thus, coefficients

contain half frequency content from its predecessor. Another

convolution between coefficients from the original signal and

father wavelet is used to obtain a narrow frequency represen-

tation on the signal (see Fig. 1). Where dl
k

and cl
k
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-

-

-

-

-��
��

��
��

-

-

-

-

-

��
��

��
��

xk

↓ 2

↓ 2

↓ 2

↓ 2

hn

gn

gn

hn

d1
k

c2
k

d2
k

Fig. 1. Discrete wavelet transform with 2 decomposition levels

the detail and approximation coefficients obtained from the

convolution of the signal with filters gn and hn, respectively.

For any wavelet basis with 2 decomposition levels (as shown

in Fig. 1) the partition of frequency content is given by the

following sub-bands {[0 fs/8], [fs/8 fs/4], [fs/4 fs/2]},
where fs is the sampling rate. Filter response for different

orders of Daubechies wavelet is shown in Fig. 2, all wavelet

functions have the same cut off frequency. The slope around

the cut off frequency is proportional to wavelet order, thus,
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a higher order allows a better separation between the sub-

bands.
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Fig. 2. Filter response for different orders of Daubechies wavelet.

B. Feature Extraction

Feature extraction from discrete wavelet transform is per-

formed by taking measures from the coefficients of each

sub-band. In this paper the standard deviation was used, it

has been successfully used as feature in [6], [13]. For L
decomposition levels with l = 1, . . . , L the feature extraction

process is calculated by (1) and (2).

STDl =

√

√

√
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where µl and µL+1 are the mean value of dl
k

and cL
k

,

respectively. N is the total number of wavelet coefficients

at the analyzed subband.

C. Re-sampling effect

In [11] an optimal signal compression approach using

discrete wavelet transform is presented. Signal compression

value is enhanced by varying the sampling frequency in

the range [1, 2) · fs. The main aim is to adapt the signal

energy distribution to wavelet tree decomposition. We believe

that selecting an adequate value for the sampling rate will

improve the classification rate in pattern recognition tasks.

An example is shown in Fig. 3(a), where the mean energy

distribution of two different classes lay in the same sub-band.

If we change the sampling rate from 2KHz to 1.4KHz we

are able to separate the classes by using the energy from

sub-bands, as shown in Fig. 3(b).

To change the original sampling frequency to another,

polyphase re-sampling method based on fractional decima-

tion [14] was adopted. Fractional decimation approach is

shown in Fig. 4. Zero values are added in the input sequence

xk by the expander P . The expanded version of the input

is fed to the interpolation filter hn. Then, the interpolation

filter averages the missing samples. Finally, output from the

filter is downsampled by a factor of Q to produce the output
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Fig. 3. Mean energy distribution in frequency band along with 4-
decomposition level wavelet bank filter (a) before re-sampling and (b) after
re-sampling .
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Fig. 4. Re-sampling by Fractional decimation scheme

signal yk. The discrete filter hk is low pass with passband

edge at min(π/P, π/Q). Rational factor (RF ) between P
and Q is defined in (3).

RF =
P

Q
(3)

In this work, RF is varied by fixing the Q value at 100 and

P takes values in the integer range [1, 190]. Thus, sampling

frequency variation is defined in the range [0.01, 1.9] · fs.

D. Particle Swarm Optimization

Like most stochastic optimization methods, PSO is a

population based algorithm, one member of the population

is known as particle. Each particle has a position (pm) and

a velocity (vm). Particle’s position indicates the parameters

that are going to be optimized, thus, pm ∈ R
d, where d

is the number of parameters. The aim of velocity vm is

to update the position of each particle, with the aim of

trying to reach a global optimum [15]. Global optimum is

achieved from the combination of the general best particle

gb (best position from population) and the best local position

pbm (best position historically reached by particle pm). For

particle pm at iteration i, the velocity is calculated as

vim = w ·vi−1
m +c1 ·r1 · (pb

i

m−p
i

m)+c2 ·r2 · (gb
i−pim) (4)

where w is inertia weight used as a tradeoff between global

and local exploration capabilities of the swarm [16]. Large

values of w allow better global exploration, while small

values lead to a fine search in the solution space. r1 and

r2 are random variables drawn from a uniform distribution

in the range [0,1], they provide a stochastic weighting of

the different components participating in the particle velocity

definition [1]. c1 and c2 are constants that regulate the

relative velocities with respect to the best local and global

positions, respectively. Then particle pm is updated for next

iteration i+ 1 with

pi+1
m = pim + vim (5)

994



A more detailed explanation of the application of PSO

for wavelet transform parameter selection is given in the

following section.

III. THE PROPOSED METHOD

As discussed in section II-A, different parameters from

wavelet transform require to be optimized. However, there

is no rule to decide what is the best value for each param-

eter. Similar problems have been addressed by empirically

comparing results from different values of each parameter.

Therefore, we propose a wavelet parameter selection method

based on PSO framework, where wavelet function (WF),

rational factor (RF) and number of decomposition level (DL)

were optimized according to the classification accuracy. In

this sense, the coordinates of the particles of the swarm

encode RF, WF and DL parameters {RF,WF,DL}. RF was

computed by varying the value of P from (3) in the range

[1, 190], with P ∈ Z . WB was selected from a list D of

conventional wavelet functions. Dictionary D was built with

orthonormal wavelet functions as shown in (6).

D = {Db1, . . . ,Db10,Coif1, . . . ,Coif5, . . . , Sym10} (6)

D contains up to 24 different wavelet functions. Mean-

while, parameter DL was set to vary in the integer range

[1, 10], thus, a maximum of 10 decomposition levels can

be performed. Concerning the fitness function, we use the

classification accuracy of a SVM classifier achieved by cross-

validation (CV) on the training set [1]. The main steps of the

proposed wavelet parameter selection method are described

in the following:

1) Initialization:

• Initialize swarm population by generating for each

particle pm a position vector {RF,WB,DL} of inte-

ger random values uniformly distributed. Velocity

vector of each particle is initially set to zero.

2) Particle evaluation:

• Compute the fitness function value for each parti-

cle pm through the following steps:

– Resample each database signal with rational

factor RF (pi
m
(1)) as in (3).

– Apply DWT with wavelet function WF (pim(2))
and number of decomposition level DL (pi

m
(3))

to each resampled signal;

– extract DL + 1 features from wavelet coeffi-

cients using (1) and (2);

– train an SVM classifier by feeding it with the

generated wavelet features. Set the fitness F i
m

function value of each particle by computing its

cross-validation accuracy.

– Store the best position of each particle in the

best local position vector. From best local posi-

tion vector, save the particle with largest fitness

function value as the best global position.

3) Updating particle positions:

• Update each velocity vector using (4);

• then, update each particle position as in (5).

4) Convergence Check: The algorithm is stopped if the

number of generations has reach its maximum, or if

the best global position does not vary significantly.

IV. EXPERIMENTAL RESULTS

In this section, we present accuracy values using the

proposed method on two different datasets. Accuracy values

are calculated from the mean of the result of a SVM classifier

(Guassian kernel) trained using a 5-fold cross validation

scheme. When cross validation is performed, Gaussian ker-

nel parameters C and γ are optimized using fixed ranges

[2−5, . . . , 215] and [2−15, . . . , 8], respectively. The proposed

method is performed on EEG and MER data sets. The former

is used to diagnose seizure events, while the latter is used

to recognize Subthalamic Nucleus (STN) for deep brain

stimulation applications.

A. Results in EEG analysis

The database used here is described in detail in [17]. Com-

plete data set consists of 5 groups (A-E), where each group

contains 100 single-channel registers. Data were digitalized

using 12 bit resolution and sampled at 173.61 Hz. Sets A and

B consist of segments recorded from five healthy subjects

with open eyes and closed eyes, respectively. Sets C, D and

E consist of segments recorded from five patients whom

achieved complete seizure control of epileptogenic zone.

Segments in set C were recorded from the epileptogenic

zone, and those in set D from the hippocampal formation of

the opposite hemisphere of the brain. While set E contained

seizure activity, sets C and D contained only seizure free

intervals. In this work, five different classification problems

are created from the above dataset in order to compare the

performance of our method in different scenarios. Table I

shows a brief description of the five classification problems.

The proposed method was used to find an adequate value of

TABLE I

EEG CLASSIFICATION PROBLEMS

Classification Problem Classes EEG segments

A,E Normal (A) 100
Seizure (E) 100

(A,C,D),E Non-seizure (A,C,D) 300
Seizure(E) 100

(A,B,C,D),E Non-seizure (A,B,C,D) 400
Seizure (E) 100

(AB),(CD),E Surface Normal (AB) 200
Intracranial 200

Seizure Free (CD)
Seizure (E) 100

A,B,C,D,E Dataset description 100/class

parameters involved in wavelet transform feature extraction.

A comparison result is shown in Table II. From the results

shown in Table II, it can be concluded that: for A and

E classification problem, all EEGs segments in the test

data are correctly classified. Additionally, a reduction of

sampling rate value can be included. In all classification

problems a better accuracy is achieved by the proposed
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TABLE II

EEG CLASSIFICATION ACCURACY COMPARISON FOR ORIGINAL AND

OPTIMIZED WAVELET TRANSFORM

Classification Problem RF DL WF Accuracy (%)

A,E 1 1 Db1 100.00
≥ 0.25 1 Db1 100.00

(A,C,D),E 1 2 Db1 98.50
0.35 1 Db1 99.00

(A,B,C,D),E 1 4 Db7 98.50
0.22 1 Sym10 99.00

(AB),(CD),E 1 4 Coif5 98.00
0.81 6 Db7 98.20

A,B,C,D,E 1 6 sym6 85.40
0.35 5 Sym10 86.00

TABLE III

MER CLASSIFICATION ACCURACY COMPARISON FOR ORIGINAL AND

OPTIMIZED WAVELET TRANSFORM

RF DL WF Accuracy (%)

1 4 Coif1 85.48
0.34 3 Sym10 87.10

method. Also, benefits such as feature space and sampling

frequency reduction are obtained, except for (AB),(CD),E

classification problem, where the number of decomposition

level is increased to obtain a slightly higher accuracy value.

B. Results in MER analysis

Dataset for analysis corresponds to five interventions

carried out locally in the city of Pereira. All the subjects

gave their informed consent allowing the use of the neural

signals recorded to research. The acquisition equipment used

is the ISIS MER of Inomed, neural signals were labeled

by two specialists in neurosurgery and neurophysiology; the

sampling rate was 24 kHz and 16-bit resolution. There are

160 neural signals divide in two groups, 80 STN signals

and 80 non-STN signals. The proposed method is applied

in MER classification problem, results are shown in Table

III. From the results shown in Table II, we conclude that

accuracy rate value is increased by optimizing sampling

rate. While accuracy value is increased, the number of

decomposition level is reduced, this, feature space is less

complex for the classifier. Sampling rate is changed from

24kHz to 8.16kHz, also reducing the requirement of a high

rate data acquisition system for signal digitalization.

V. CONCLUSIONS

In this paper, we proposed a novel wavelet parameter

optimization procedure based on PSO. Sampling rate was

optimized with the number of decomposition levels and

the wavelet function, to adjust wavelet feature extraction in

discrimination enhancement. Discrimination capability was

measured through an empirical estimate of the SVM classi-

fier accuracy. The experimental results show that it achieves

better classification accuracies compared to different wavelet

functions without resampling. Its main drawback is that the

method tends to select high order wavelet functions, because

they have better frequency separation capabilities than low

order wavelet functions.
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