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Abstract— This paper presents a three-class mental task 
classification for an electroencephalography based brain 
computer interface. Experiments were conducted with patients 
with tetraplegia and able bodied controls. In addition, 
comparisons with different time-windows of data were 
examined to find the time window with the highest 
classification accuracy. The three mental tasks used were letter 
composing, arithmetic and imagery of a Rubik’s cube rolling 
forward; these tasks were associated with three wheelchair 
commands: left, right and forward, respectively. An eyes closed 
task was also recorded for the algorithms testing and used as 
an additional on/off command. The features extraction method 
was based on the spectrum from a Hilbert-Huang transform 
and the classification algorithm was based on an artificial 
neural network with a fuzzy particle swarm optimization with 
cross-mutated operation. The results show a strong eyes closed 
detection for both groups with average accuracy at above 90%.  
The overall result for the combined groups shows an improved 
average accuracy of 70.6% at 1s, 74.8% at 2s, 77.8% at 3s, 
79.6% at 4s and 81.4% at 5s. The accuracy for individual 
groups were lower for patients with tetraplegia compared to 
the able-bodied group, however, does improve with increased 
duration of the time-window. 

I. INTRODUCTION 

A Brain Computer Interface (BCI) offers a hands free 
method for people to communicate by using brain signals 
only it therefore bypasses the body’s natural muscular 
activity. People with severe disabilities and neurological 
conditions such as high-level spinal cord injury (SCI) or 
tetraplegia and amyotropic lateral sclerosis (ALS) could 
benefit from BCI technology. For example, BCI as a thought 
controller can be used to improve mobility in this severe 
disability group when used as a BCI based wheelchair 
controller. For this application, at least three commands are 
necessary to control the wheelchair this being, to signal turn 
left, turn right and move forward [1]. 

In the current state, non-invasive BCI using 
electroencephalography (EEG) for measuring electrical brain 
signals is popular in the BCI research community. Example 
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of EEG based-BCI are P300 [2], the steady state evoked 
potential (SSVEP) [3], and even-related desyncronization-
synchronization (ERD-ERS) [4] that uses sensory motor task 
and other mental non-motor imagery tasks. P300 and SSVEP 
are selective attention based BCI methods. For these 
methods, the user needs to keep focusing on external cues 
when operating the BCI. This could be cumbersome, as the 
user is required to control the wheelchair and maintain focus 
on the external cues at the same time. On the other hand, a 
BCI using ERD/ERS and other non-motor imagery methods 
relying on spontaneous intentional mental signals from the 
user could be a better option for wheelchair control. 
ERD/ERS method basically concentrates on motor imagery 
mental tasks by performing hand, foot, tongue and other body 
parts’ movement as describe in the motor homunculus. 

There is a case of BCI illiteracy and for people who have 
been disabled for a long period of time; they may not be able 
to use the motor imagery based-BCI very well [5]. In this 
case, we have been used an alternative non-motor imagery 
based solution as an option [6, 7]. However, most of the 
results of BCI classification experiments, especially with the 
mental task non-motor imagery BCI, have reported on the 
able-bodied only without including individuals with severe 
disabilities, which are an important target group for BCI 
technology.  

This paper presents the result of three-classes of mental 
task classification with five able-bodied participants and five 
patients with tetraplegia. The non-motor imagery mental 
tasks used are letter composing, arithmetic and figure 
Rubik’s cube rolling forward, which are associated to the 
three wheelchair movements: left, right and forward. An 
additional eyes closed task is also recorded for testing.  Also, 
different time-windows of data are investigated to find the 
best data windowing with an improved result of classification 
accuracy. The features extraction method was based on the 
Hilbert-Huang transform (HHT) and the classification 
algorithm was based on the artificial neural network (ANN) 
with fuzzy particle swarm optimization using cross-mutated 
operation (FPSOCM). 

II. METHODS 

A. Data Collection 

This study was approved by the University of 
Technology, Sydney, Human Research Ethics Committee  
with five able bodied subjects (S1-S5) aged between 25 and 
35 years and five patients with tetraplegia (T1-T5), aged 
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between 45 and 80 years who suffer a high-level of SCI in 
the cervical area  at level C3, C4, C5 and C6. 

A commercial EEG system (Compumedic-Siesta) with 
256 Hz of sampling rate was used for the experiment with the 
electrodes positioned at locations C3, C4, P3, P4, O1 and O2. 
The left and right earlobes are used as the reference and GND 
electrodes. This configuration uses the international 10-20 
montage system. Fig.1 shows the experiment set-up on 
patients with tetraplegia including electrode locations. During 
the experiment, the impedance is measured and kept below 5 
kΩ and the eye blinks are kept to a minimum. The three 
mental tasks which are used include: mental letter composing 
by composing sentences in the mind; mental arithmetic by 
imagining and solving multiplication problems in the mind 
and mental figure Rubik’s cube rolling by imagining a figure 
rolling a Rubik’s cube in a forward direction. Additional eyes 
closed and opened tasks were recorded for testing. 

 

Figure 1.  Set-up EEG experiment on patients with tetraplegia  

B. Computational Intelligence  

The experiment was recorded for 10 sessions for each 
mental task with 15s of data recording time in each session. 
The first 3s of data was discarded as preparation time. The 
rest of data (12s) was used for further computational 
processing. For signal pre-processing, different moving time-
window segmentations of 1s, 2s 3s, 4s and 5s were compared 
with a quarter second segment of window overlapping. This 
provided 45 segments for a 1s time-window; 41 segments for 
a 2s time-window; 37 segments for a 3s time-window; 33 
segments for a 4s time-window and 29 segments for a 5s 
time-window. With a total of 10 sessions, each participant 
provided data of 450 units for a 1s time-window; 410 units 
for a 2s time-window; 370 units for a 3s time-window; 330 
units for a 4s time-window and 290 units for a 5s time-
window in each mental task. This was further processed by 
applying digital signal processing filters using a Butterworth 
band-pass filter (0.1-100 Hz) and a Butterworth notch at 50 
Hz for signal to noise ratio improvement. 

The features extraction method was based on time-
frequency analysis of spectrum of a Hilbert Huang transform 
(HTT). The HHT was used to tackle different non-linear and 
non-stationary data including EEG signals and provided 

better results compared to the conventional fast Fourier 
transform (FFT) [7, 8]. There are two main processes in HHT 
analysis: empirical mode decomposition (EMD) for 
decomposing the time series of data into sets of intrinsic 
mode decomposition (IMF) and Hilbert Transform (HT) to 
obtain spectrum of Hilbert-Huang transform as follows: 
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where x(t) denotes the segment of EEG data, ci(t) is the ith 
extracted IMF and rn(t) is the residual. The HT provides the 
amplitude and instantaneous frequency as a function of time 
as represented as the spectrum of HHT. The amplitude ai(t), 
the phase I(t) and the instantaneous frequency i(t) are: 

 2 2( ) ( ) ( )i i ia t y t c t   (2) 

( ) arctan( ( ) / ( ))i i it y t c t   (3)

( ) ( ) /i it d t dt   (4)

The spectrum of the HHT that was used for the features 
covered the following EEG frequency bands: δ (1-3Hz), θ (4-
7Hz), α (8-13Hz) and β (14-30Hz). The result of input 
features on each EEG channel was 30 units and with the six 
EEG channels resulted in 180 units of input features.  

For the classification algorithm, artificial neural network 
(ANN) was employed. ANN is known as a non-linear 
classification method and has been used for biomedical 
application including the application of EEG based- BCI [6, 
9]. This study used a 3-layers feed forward neural network 
with one hidden layer network as shown in Fig.2. The 
features need to be normalized into the range of zero to one 
as log-sigmoid was used. 
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Figure 2.  The 3-layers ANN structure for the classification algorithm 
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where f1 and f2, denotes the activation functions of ANN,  n 
refers to the number of input nodes, m refers to the number of 
output nodes, wji denotes the weight to the hidden unit yj from 
input unit xi, wkj represents the weights to output unit zk from 
hidden unit yj. The biases are denoted by bj and bk. X* is the 
input features after normalization. X is the input features 
before normalization. Xmin and Xmax are the minimum and the 
maximum value of the input features. 

Fuzzy particle swarm optimization with cross-mutated 
operation (FPSOCM) was used to optimize the parameter of 
ANN. The FPSOCM method has been shown to produce 
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better experimental results compared to other existing 
methods [10]. A fuzzy inertia weight  (t)   and a cross-
mutated (CM) operation were introduced for performance 
searching improvement and to tackle the issue of trapping in 
local minimal.  

This was started by the initialization of the particle swarm 
X(t) with generation number t  0. The particle was evaluated 
by cost-objective function, ƒ(X(t))). Prior to the iterative PSO 
process, the probability of CM operation (pcm) was defined.  
The value of  (t) is controlled by two inputs of fuzzy 
inference system, the normalized standard deviation of cost 
value among all the particles, ς(t) and the iteration stage, 
t/T. After the  (t) has been calculated, the velocity (v(t)) 
was updated.  

The next process was to find the control parameter, (t) 
by using the fuzzy interference system. Here, the velocity of 
all particle element swarm was evaluated by defined 
probability of CM (pcm) in the CM process. A random 
particle (Rcm) with the value in the range of 0 and 1 is 
generated. If the Rcm has value more than the pcm, CM 
operation will be performed on a particular element. The 
maximum velocity value (vmax) was applied to limit the 
particle velocity. After the CM operation, an updated particle 
swarm was generated. Another condition was applied to 
ensure particle elements have value within the range [minj 
maxj]. The process was repeated until a defined number of 
iteration (T) was met.   

III. RESULTS 

During eyes closed task, there was a dominant feature on 
the alpha band of EEG (8-13Hz). This unique feature can be 
used for the HHT feature extraction method testing to ensure 
the method is correctly converting the raw EEG signal into 
correct features.  

 

Figure 3.  IMFs of eyes closed task in 1s time-window 

In HHT, the segmented signal was processed and 
converted into series of IMF and a residue. Fig.3 shows the 
tested eyes closed signals that have been converted into a 
series of IMFs. After the application of the HT to the IMFs, 
the amplitude and instantaneous frequency was defined as 
functions of time. The plotting of the HHT results in Fig.4 for 
the eyes closed task shows a clear dominant feature of the 

instantaneous frequency of the alpha EEG band (8-13Hz). 
This proves the features extraction method has correctly 
converted the eyes closed task into the proper feature.   
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Figure 4.  HHT spectrum for eyes closed 1s time-window 

The features from different time-windows of data: 1s 
(450 units), 2s (410 units), 3s (370), 4s (330 units), 5s (290 
units) were divided into a training set (50%) and a set for 
testing (50%) of the ANN with FPSOCM optimization.  

TABLE I.  ACCURACY OF EYES CLOSED-OPENED TASK WITH 

ABLE-BODIED (S1-S5) AND PARAPLEGIC (T1-T5) SUBJECTS  

Subjects 
 

Mean of accuracy(%) in different time-windows (1s to 5s) of  
5 able-bodied subjects (S1-S5) and  
5 patients with tetraplegia (T1-T5) 

1s 2s 3s 4s 5s 
S1 97.4 98.6 99.4 99.8 100 

S2 98.9 99.4 99.6 99.7 100 

S3 94.5 95 97.8 98.6 99.8 

S4 97.9 98.4 98.7 99.3 99.5 

S5 98.3 98.8 99.3 100 100 

T1 93.6 96.4 98.5 99.2 99.8 

T2 96.5 98.6 99.5 99.7 99.8 

T3 85.8 90 90.4 94 95.4 

T4 80.7 82.9 87.4 93.6 94.3 

T5 84.5 92.4 94.2 95.6 98.6 
Overall 
mean 

% ± std 
92.8±6.6 95.1±5.3 96.5±4.4 97.9±2.5 98.7±2.1

 

The number of hidden neurons was tested with a variation 
of 4 to 30 units to obtain the best number with the lowest 
mean square error (MSE) and highest classification accuracy. 
The training of the neural network was repeated 10 times in 
each different hidden neuron. The parameters for FPSOCM 
optimization algorithm were as follows: The population 
swarm size is 50, number of training iteration is 2000, 
acceleration constants are 2.05, maximum velocity is 0.2, and 
probability of CM is 0.0005. 

In table I, the overall result of the ANN classification 
shows the eyes closed and opened experiments resulted in 
mean accuracies above 90% for able bodied participants and 
patients with tetraplegia. This accuracy improved as the time-
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window of EEG signal increased. The high accuracy for eyes 
closed-opened shows the HHT algorithm was able to 
generate distinct features for the FPSOCM based neural 
network for eyes closed-opened classification. The eyes 
closed task can also be used for the additional on/off 
command for the purpose of BCI based wheelchair control. 

TABLE II.  ACCURACY OF THREE MENTAL TASKS 

CLASSFICATION WITH ABLE-BODIED (S1-S5) AND PARAPLEGIC 

(T1-T5) SUBJECTS IN DIFFERENT TIME-WINDOWS OF DATA 

Subjects 
 

Mean of accuracy(%) in different time-windows  
(1s to 5s) of 5 able-bodied subjects (S1-S5) and 

 5 patients with tetraplegia (T1-T5) 
1s 

(%±std) 
2s 

(%±std) 
3s 

(%±std) 
4s 

(%±std) 
5s 

(%±std)
S1 74.2 ± 1.1 75.9 ± 1.1 77.8 ± 2.3 79.8± 2.4 80.6±1.7

S2 69.5 ± 0.7 71.7 ± 0.9 77.4 ± 0.8 81 ± 0.9 82.7±0.7

S3 78.6 ± 2.3 83.3 ± 1.5 83.9 ± 1.8 86.1 ± 1.4 85.4±2.5

S4 79.2 ± 0.8 81.9 ± 0.9 83.4 ± 0.9 82.1 ± 0.7 82.7±1.2

S5 74.1 ± 1.3 76.9 ± 1.7 79.1 ± 1.5 79.5 ± 1.8 81.1±2.1
Mean  

(S1-S5) 
% ± std 

75.1 ± 4.0 77.9 ± 4.7 80.3 ± 3.1 81.7±  2.7 82.5±1.9

T1 64.3 ± 1.8 74.1 ± 1.2 77.3 ± 1.4 77.8 ± 1.0 81.5±1.4

T2 67.4 ± 1.6 69.4 ± 1.5 71.2 ± 1.3 75.6 ± 1.2 79.9±2.7

T3 65.8 ± 1.5 72.8 ± 1.7 78.7 ± 1.1 79.7 ± 1.3 80.1±1.0

T4 68.9 ± 1.9 73.8 ± 1.5 76.9 ± 1.1 79.5 ± 1.5 81.2±0.4

T5 64.2 ± 1.6 68.5 ± 1.7 72.4 ± 1.2 74.8 ± 2.3 78.8±1.5
Mean    

(T1-T5) 
% ± std 

66.1 ± 2.7 71.7 ± 3.3 75.3 ± 3.9 77.5 ± 2.2 80.3±1.1

Overall 
mean 

% ± std 
70.6 ± 5.9 74.8 ± 5.2 77.8 ± 4.4 79.6 ± 3.2 81.4±1.8

 

The result classification of three mental tasks (letter 
composing, arithmetic and Rubik’s cube rolling forward) is 
shown in Table II. For a 1s time-window, the average 
accuracy of five able-bodied subjects results was 75.1±4.0%. 
For patients with tetraplegia, the average accuracy is lower at 
66.1±2.7%. Compared to the 1s time-window, the accuracy 
for the 2s time-window for both groups improved. The 
average accuracy for able-bodied subject was 77.9±4.7% and 
for the patients group, it was 71.7±3.3%. For the 3s time-
window, the average accuracy stays increased for both 
groups, with the able bodied group result having an average 
accuracy of  80.3±3.1% and 75.3±3.9% for the patients 
group. For a 4s time-window, the average accuracy improved 
for both groups: 81.7±2.7% for able-bodied group and 
77.5±2.2% for patients group. The average accuracy was 
further improved for a 5s time-window compared to previous 
1s, 2s, 3s and 4s time-window for both groups: 82.5±1.9% 
for able-bodied subjects and 80.3±1.1 for patients with 
tetraplegia.  

For overall accuracy for both groups, it can be seen that 
the average accuracy improved when the time-window of 
data increased: 1s time-window at 70.6±5.9%, 2s time-
window at 74.8± 5.2%, 3s time-window at 77.8±4.4%, 4s 
time-window at 79.6±3.2 and 5s time-window at 81.4±1.8.  

IV. CONCLUSION 

The classification of mental tasks has been applied to able-
bodied subjects and patients with tetraplegia by using HHT 
as the features extraction method and neural network with 
the fuzzy particle swarm optimization with cross-mutated 
operation for the classification algorithm. The results 
showed a high accuracy for both groups for an eyes closed 
task. This proves the feature extraction method has correctly 
translated the raw EEG signal into the feature.  For a three 
mental task classification, although the patients group has 
lower classification accuracy for a 1s time-window input of 
data, the accuracy is improved upon by increasing the time-
window of data to 2s, 3s, 4s and 5s. This three mental tasks 
(letter composing, arithmetic and Rubik’s cube rolling 
forward) classification can be mapped for three wheelchair 
movements detection (left, right and forward) with 
additional eyes closed action for on/off command. 
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