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Abstract— Observation of a patient’s respiration signal can
provide a clinician with the required information necessary
to analyse a subject’s wellbeing. Due to an increase in popu-
lation number and the aging population demographic there
is an increasing stress being placed on current healthcare
systems. There is therefore a requirement for more of the
rudimentary patient testing to be performed outside of the
hospital environment. However due to the ambulatory nature
of these recordings there is also a desire for a reduction in the
number of sensors required to perform the required recording
in order to be unobtrusive to the wearer, and also to use textile
based systems for comfort. The extraction of a proxy for the
respiration signal from a recorded electrocardiogram (ECG)
signal has therefore received considerable interest from previous
researchers. To allow for accurate measurements, currently
employed methods rely on the availability of a clean artifact free
ECG signal from which to extract the desired respiration signal.
However, ambulatory recordings, made outside of the hospital-
centric environment, are often corrupted with contaminating
artifacts, the most degrading of which are due to subject motion.
This paper presents the use of the ensemble empirical mode
decomposition (EEMD) algorithm to aid in the extraction of
the desired respiration signal. Two separate techniques are
examined; 1) Extraction of the respiration signal directly from
the noisy ECG 2) Removal of the artifact components relating
to the subject movement allowing for the use of currently avail-
able respiration signal detection techniques. Results presented
illustrate that the two proposed techniques provide significant
improvements in the accuracy of the breaths per minute (BPM)
metric when compared to the available true respiration signal.
The error reduced from ± 5.9 BPM prior to the use of the two
techniques to ± 2.9 and ± 3.3 BPM post processing using the
EEMD algorithm techniques.

I. INTRODUCTION

Respiration monitoring has long been an invaluable metric
in the analysis and monitoring of a number of different
chronic diseases, such as stroke and heart disease, as well
as other ailments such as acute respiratory distress syndrome
(ARDS). Over recent years, there has been an ever increasing
move from hospital-centric healthcare towards in-home or
ambulatory health assessment. This shift is in part due to
the increasing financial burden on healthcare brought on by
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the increase in both population number and life expectancy.
However, there remains a requirement for recording systems
capable of providing quantitative assessment comparable to
the gold standard results available in the hospital environ-
ment.

Currently there are systems available to provide high
quality information regarding heart rate, respiration, move-
ment etc. outside of the hospital environment however these
systems often require multiple sensors which can be cum-
bersome to apply and can make the wearer uncomfortable.
By doing so, the patient is more likely to act in an irregular
manner and hence exhibit behaviour which may invalidate
the results. There is therefore a desire to develop systems and
sensors which can measure multiple vital signs concurrently
and hence reduce the intrusiveness of the measurement.

Traditionally, respiration is measured using strain gauges
or piezoelectric transducer devices strapped to the subjects
chest or using air flow or pressure sensors on the subjects
nasal cavity or mouth [1] [6]. Each of these sensors can cause
discomfort to the user when used for prolonged periods.
An alternative, more oblique respiratory measure can be
accessed through appropriate processing of the ECG [4]
however such techniques only perform well for ECG charac-
terised by high signal-to-noise ratio (SNR). For example, the
envelope detection method [7] (Section III-A) determines the
respiration signal to be the variation in a spline connecting all
the R-waves in the ECG. If the ECG signal is contaminated
sufficiently with artifacts, this technique will no longer be
able to provide the correct respiration signal.

This paper proposes a pre-processing method for deriving
respiratory rate from ECG in the presence of contaminating
artifact which would normally prohibit the accurate deter-
mination of the respiratory signal. The ensemble empirical
mode decomposition (EEMD) technique is employed to test
two separate methods for determining the respiration signal
from these contaminated ECG signals. The first method
uses the EEMD technique to separate the ECG signal into
intrinsic mode functions (IMFs) and the IMF which best
represents the respiration signal is then extracted. The second
method differs by using the EEMD technique in conjunction
with the available accelerometer signal to clean the ECG
signal, allowing the standard envelope detection method to be
used to determine the respiration signal. Both techniques are
shown to significantly improve the accuracy of the respiration
rate from contaminated ECG.
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Section II first describes the experimental setup including
the data acquisition and experimental protocol adhered to.
Section III describes the method for determining the respi-
ration rate from the ECG and also describes the employed
EEMD algorithm. Section IV provides the findings of the
paper and finally Section V provides the overall conclusion.

II. EXPERIMENTAL SETUP

This section summarises the basic experimental setup used
to obtain the data utilised for this paper. For testing and
validation, three separate data modalities are recorded: elec-
trocardiography (ECG), acceleration and a reference respira-
tion signal. The sensors used to monitor the required signals
are first described below. Following this, the experimental
procedure is presented.

A. Data Acquisition System

As already stated, three separate signal modalities were
measured during the recording protocol. Figure 1 illustrates
the “Smartex Wearable Wellness System (WWS)” chest strap
[8] used to house the three recording sensors. This WWS
is a wearable system based on textile knitted sensors [5].
The electrocardiography signal (ECG) is used to monitor
the electrical activity associated with the pumping of the
heart. The ECG signal was recorded using two moistened
fabric sensors located at either side of the ribcage. The
use of these fabric electrodes eliminates the requirement for
adhesive electrodes which can be cumbersome to apply and
have been shown to occasionally cause skin irritation [2],
while also allowing for unlimited use. The ECG signal was
recorded at a sampling rate of 250 Hz.

Fig. 1. Smartex Wearable Wellness System. (a) Respiration sensor
positioned at the front centre of the band. Accelerometer located in the
CSEM recording module which is housed in the indicated pouch. (b) Fabric
ECG electrodes located on the inside of the chest strap.

The acceleration signal was recorded using a tri-axial
accelerometer located in the recording module shown in
Figure 1. This recording module was securely stored in the
pouch located on the front of the chest strap and therefore
the accelerometer could accurately monitor the positional
changes of the body. The sampling rate of the accelerometer
was set at 25 Hz.

The respiration signal was also monitored by a piezore-
sistive knitted textile sensor using the chest strap so that
a reference signal was available against which the efficacy
of the artifact removal techniques could be monitored. As
stated in Section I, a proxy for the respiration signal can

be determined from a recorded ECG signal. Therefore, by
obtaining a true recording of the subject respiration rate,
the deviation of the ECG derived respiration rate can be
quantified. The respiration signal was recorded using a fabric
stretch sensor located on the front sensor of the chest strap
as can be seen from Figure 1. As the subject both inhales
and exhales, the force on the stretch sensor alters, presenting
a recordable change in resistance. This resistance change can
then be related to the change in lung volume. The respiration
sensor was also sampled at the lower frequency rate of 25 Hz.

All data recorded was stored on an on-board SD card for
post processing using MATLAB R©.

B. Experimental Procedure

For the purpose of validating the proposed methodology
and for determining a more accurate measure of respiration
rate from an ECG signal, two separate recording protocols
were employed. The first protocol (labeled Protocol 1) in-
volved the recording of the three described signals while
the subject slept. By performing this first protocol, the “best
case” results can be determined for classification of the
respiration rate from the ECG, when no motion artifacts are
present. 2 hours of data was each recorded from 2 subjects
(1 male, mean age 28 years).

The second recording protocol (labeled Protocol 2) in-
volved the recording of the ECG, acceleration and respiration
signals while the subject was in motion. In order to generate
the required artifacts on the ECG signal, the subject was
instructed to wear the chest strap while running outdoors.
The presence of artifacts would degrade the quality of
the ECG signal and thus make the classification of the
respiration signal less accurate as can be seen from Table I.
No specification was ordered on the pace of the individual
runs. The cadence of the runs was determined to range from
75 to 95 revolutions per minute.

The determined respiration rates from the protocols de-
scribed above are presented in Section III-A.

C. Data Setup

In order to test the efficacy of the described artifact
removal technique, the data recorded using both protocols
described in Section II-B were separated into individual
epochs of 60 second duration. This data separation resulted
in 120 trials of data for Protocol 1 and 29 trials for Protocol
2.

The 29 epochs of data from Protocol 2 were separated
into training and test data to allow for the determination of
the IMF component relating to respiration, as specified in
Section III-B. 4 epochs were randomly selected as training
data with the remaining 25 epochs used to test the efficacy
of the techniques.

III. METHODS

A. Deriving Respiration from ECG

As described in Section I there have been a number of
different methods shown to be capable of determining subject
respiration rate from ECG signals [7]. For the purpose of this
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paper the well known envelope method is used to establish
the respiration rate. As stated previously, an ECG signal
is a recording of the changing electrical activity of the
heart recorded using electrodes on the chest. However, due
to subject respiration the conducting volume of the body
rhythmically changes. This volumetric change causes a low
frequency signal fluctuation to be observed on the ECG
and therefore by extracting this low frequency oscillation
the respiration rate of the subject can be determined. The
envelope method uses a cubic spline to connect the R-
waves of the ECG, with the resulting spline representing the
underlying respiration signal. Figure 2 shows an example
of the envelope calculated over an epoch of clean data
from Protocol 1. The correlation with the corresponding
respiration signal can be easily observed.

Fig. 2. Envelope detection for determining the respiration rate from an
ECG signal.

However, with the data recorded using Protocol 2, the
artifact due to motion has contaminated the ECG disrupting
the amplitude of the R waves. Therefore the envelope method
does not function as optimally as before. It is therefore
desirable to remove the contaminating artifact so as to
improve the performance of the envelope method.

Prior to running the artifact removal techniques the respira-
tion rates of the true respiration signal and the respiration rate
determined from the ECG, recorded using Protocols 1 and 2,
were calculated. Protocol 1 resulted in an average respiration
rate of 14.8 breaths per minute (BPM) with the ECG derived
respiration having a deviation of ±1 BPM, similar to those
results shown in [1]. For Protocol 2 the true average BPM
was 50 BPM and the calculated deviation of the ECG derived
respiration was much larger at ±5.9 BPM due to the presence
of the artifacts.

B. Ensemble Empirical Mode Decomposition
Empirical mode decomposition (EMD) is a method, first

defined in 1998 [3], for nonlinear signal processing and
is well suited to non-stationary signals. The method de-
composes a time series signal into multiple “intrinsic mode

functions” (IMFs). The EMD technique differs from other
techniques [9], such as Wavelet analysis, in that the decom-
position of the signal is data driven whereas wavelet analysis
relies on the selection of the appropriate wavelet. As the
technique is data driven, it is therefore adaptive in nature,
making it very flexible.

The IMFs are functions that satisfy two separate condi-
tions: (1) over the full length of the data set the number of
maxima and the number of zero crossings must be the same
or differ at most by one and (2) at any point over the data set,
the mean value of the envelope defined by the maxima and
the envelope defined by the minima must be zero [3]. The
interested reader can find the steps performed to determine
the underlying IMF in [10]. The EMD algorithm is however
very sensitive to noise in the recorded signal. This can lead to
complications due to mode mixing. Mode mixing is defined
as an IMF that includes oscillations of dramatically disparate
scales or a component of similar scale residing in different
IMFs, and can also be due to the presence of a transient
spectral component in the signal. An extension to the EMD
algorithm was proposed in [10] which eliminates this mode
mixing problem. The updated algorithm called Ensemble-
EMD (EEMD) uses an average of a number of ensembles of
the EMD algorithm as the optimum choice of IMFs. Each
run of the EMD algorithm has an independent, identically
distributed white noise of the same standard deviation added
thus providing a noise-assisted data analysis method.

For the purpose of this paper, the EEMD technique was
employed in two separate approaches. The first approach (la-
beled Approach 1) used the EEMD algorithm to decompose
the signal into its IMFs with the expectation that one of
the IMF would itself represent the respiration signal. This
is expected as the respiration signal will have the same
number of maxima as minima while having a zero mean.
The second approach (labeled Approach 2) again employed
the EEMD to decompose the ECG signal, but in this instance
the component(s) relating to the movement artifacts were
removed and the cleaned ECG signal was then reconstructed.
The respiration signal could then be calculated using the
steps described in Section III-A.

Approach 1 requires the component relating to the respi-
ration signal be determined. This optimal IMF component
was first determined using the 4 training trials and the cor-
responding true respiration signal. The component relating
to respiration was determined to be the IMF which had the
maximum correlation with the corresponding true respiration
signal. This IMF component was then determined to also
represent the respiration signal for the test data.

Approach 2 employed the available accelerometer signal
to determine the contaminating artifact signal IMF. The
accelerometer outputs are related to the movement of the
subject and thus can be assumed to be correlated with the
artifact signal contaminating the ECG signal. Therefore by
removing the IMF components which are most correlated
with the accelerometer output, the power of the contami-
nating artifact on the reconstructed ECG signal is reduced
allowing for a more accurate classification of the respiration
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rate using the envelope method.

IV. RESULTS & DISCUSSION

The two different EEMD approaches described in Sec-
tion III-B were run on the 25 individual trials of test data
from Protocol 2. For both EEMD techniques, the number
of ensembles was set to 5 and the standard deviation of
the noise was set as 0.2. The resulting respiration rate in
breaths per minute (BPM) was determined after applying
both Approach 1 & 2. Each trial was re-run 100 times to
retrieve an average result for each trial. This was required
as the determined IMF can vary slightly with each run due
to the variability in the added noise. Table I presents the
obtained results. The results show the true average BPM
value (obtained using the stretch sensor located on the chest
strap) and the average difference in BPM of the original ECG
signal and after applying Approach 1 & 2.

TABLE I
IMPROVEMENT IN CALCULATED BPM AFTER USING THE EEMD

TECHNIQUES.

Respiration ECG EEMD App. 1 EEMD App. 2
BPM 50 ± 5.9 ± 2.9 ± 3.3

The results presented above validate that the EEMD tech-
niques significantly improve the accuracy of the respiration
rate estimate derived from the artifact contaminated ECG.
These results show on average a 51 % reduction in error
when applying Approach 1 (selection of the respiration signal
from the IMF) and a 44.1 % reduction when using Approach
2 (using the accelerometer signal to determine the artifact
IMF components prior to the reconstruction of the signal and
the calculation of the respiration using the envelope method).
The greater performance improvement, using Approach 1,
could be due to the EEMD’s ability to more accurately
separate the respiration component, rather than the artifact
components, from the noisy ECG.

Although providing slightly lower results, Approach 2 is
adaptive in nature allowing it to function similarly even if
the respiration rate or the running pace changes. Approach 1
provides quantitatively better results, however the method is
not amenable to real-time automatic estimation. To allow the
technique to operate automatically, an algorithm capable of
determining which IMF component relates to the respiration
signal would be required to be developed.

V. CONCLUSION AND FUTURE WORK

Respiration monitoring is a clinically useful measurement
which can be used to aid in the diagnosis and treatment of a
number of different ailments. As some of the monitoring
systems are uncomfortable to wear for long durations or
require the use of additional sensors they are rarely used
outside of the hospital environment. However, the respiration
signal can also be determined using an ECG signal recording
allowing for the monitoring of multiple vital signs using a
single sensor, thus reducing hardware complexity and the
power required by the implemented systems. Further, the

utilised ECG textile electrodes are low cost and are widely
available (e.g. Polar WearLink R©, Adidas miCoach R©).
Unfortunately, methods used to determine the respiration rate
from ECG signals are prone to artifacts, and their accuracy
can be reduced significantly. In this paper we examined the
use of the ensemble empirical mode decomposition (EEMD)
algorithm to determine a more accurate representation of the
respiration rate.

Two separate approaches were analysed. Approach 1
separated the artifact contaminated ECG signal into its
corresponding IMF, and through previous training, selected
the IMF relating to the respiration signal. This approach
functioned well, however its inability to adapt to large
variations in respiration rates and the requirement for training
prior to application may restrict its use in on-line systems.

Approach 2 used the accompanying accelerometer signal
to determine the IMF components that were related to the
motion artifact. These IMF were then removed prior to
the reconstruction of the cleaned ECG signal where the
envelope method was used to determine the respiration rate
of the signal. This technique is adaptive and will operate
with varying BPM, however it will encounter problems if
the frequency of the accelerometers matches that of the
respiration signal.
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