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Abstract— In recent years, the phase synchronization phe-
nomenon in the electroencephalograph (EEG) has been widely
used to observe interactions between separate areas of the
cortex. However, the traditional coherence to measure the phase
synchronization need target signals to be stationary. In this
paper, we propose a technique to measure the phase synchrony
of non-stationary signals by the Phase Locking Value (PLV)
with Hilbert transform and the Bivariate Empirical Mode De-
composition (BEMD). We analyzed the phase synchronization
of EEG signals which were recorded during Dynamical Dot
Quartet (DDQ) tasks using the conventional method and the
proposed method. The analysis result suggests that proposed
method more suitable for detecting the phase synchrony during
the DDQ tasks than the conventional methods.

I. Introduction

A brain has different functions in each cortex. Some brain
activities associated with certain mental tasks are observed
at several cortices at the same time [1]. Such brain activities
that occur at several cortex are called cooperative brain
activities. A recent study [2] has suggested that cooperative
brain activities can be measured by the phase synchronization
of electroencephalograph (EEG) signals.

The coherence [3] is a classical method for quantifying the
phase synchronization. However, by definition the coherence
assumes the stationarity of EEG signals which is not a prac-
tical assumption. The Phase Locking Value (PLV) evaluates
the synchrony of two signals by the instantaneous phase
difference that is extracted by a time–frequency analysis.
Unlike the coherence, the PLV does not need to assume the
stationary of signals.

To calculate the PLV, the instantaneous phase of the signal
should be estimated. Well-known classical methods to extract
the phase are short-time Fourier transforms and wavelet
transforms [4]. Such a time–frequency analysis provides
instantaneous phases of the target signal [5]. However, these
methods have a trade-off between the temporal resolution and
the frequency resolution [4]. Moreover, these methods are
not suitable for analyzing components that have frequency
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fluctuations, which can be decomposed into several narrow-
band components, even though the signal contains only one
synchronized component.

To avoid this, we propose to use the Bivariate Em-
pirical Mode Decomposition (BEMD) [6], [7] followed
by the Hilbert transform [8] to obtain the instantaneous
phase. The BEMD decomposes two target signals into
the signals called Intrinsic Mode Functions (IMF), which
are amplitude/frequency-modulated (AM/FM) waveforms.
Therefore, even though the target component in the observed
signal has a single oscillating mode with slightly fluctuating
frequencies, it can be represented as a single IMF. Moreover
it should be noted [6], [9] that the IMF well-defines the
instantaneous phase by using the Hilbert transform. In [10],
a synchrony analysis using the ordinary univariate EMD
[9] was reported. However, the UEMD generates different
numbers of IMFs for two different channel signals. This
yields the difficulty of the synchrony analysis.

We analyzed the EEG signals recorded during Dynamical
Dot Quartet (DDQ) tasks where the two dots are shown
to subjects [11]. It has been found [11], when the sub-
jects perceive that the dots move horizontally, the phases
synchronizes between left and right visual cortex. Previous
works showed the relation between the phase synchronization
and the perception using the coherence [11] and wavelet
transforms with the PLV [12]. We demonstrated that the
proposed method is more suitable for detecting the phase
synchrony than the conventional methods. We also analyzed
the variation of the PLV over time in the relation between the
phase synchronization and the perception using the proposed
and the conventional methods.

II. Phase Synchrony Detection Using Single-Trial Phase
Locking Value

The phase locking is defined as the constant phase differ-
ence. Given a pair of signals x(t) and y(t), the phase locking
is defined [13] as ∣∣∣φx(t) − φy(t)

∣∣∣ = const., (1)

where φx(t) and φy(t) are instantaneous phases of x(t) and
y(t), respectively. Even if the phase of two signals is locked,
the phase difference of practical observed signals is not
exactly constant. Thus, to quantify the phase difference,
the Single-trial Phase Locking Value (SPLV) can be used
[13]. The SPLV is defined as the time-average of the phase
component:

SPLV( f , t) =

∣∣∣∣∣∣
1
T

∫ t+T/2

t−T/2
exp(i(φy( f , t) − φx( f , t)))dt

∣∣∣∣∣∣ , (2)
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where i =
√−1 is the imaginary unit, φx( f , t) and φy( f , t)

are the instantaneous phases of narrow-band signals with the
center frequency of f , and T is the length of a time window,
which controls the temporal resolution of the analysis. SPLV
ranges from 0 to 1, and 1 indicates the strongest phase-
locking. When the length of the smoothing window is short,
the temporal resolution is considered high. The short length
of a smoothing window can lead to the SPLV close to unity.

III. Phase Component ExtractingMethod

A. Wavelet transform

The instantaneous phase is extracted from the coefficients
of complex-valued wavelet transforms [4]．The wavelet
transform is given as

Wx(τ, f ) =
∫ ∞
−∞

x(t)Ψ∗τ, f (t)dt, (3)

where x(t) is the observed signal, Ψτ, f (t) is the wavelet
function, τ is the center location, f is the target frequency,
and ·∗ is the complex conjugate. The well-known complex
Gabor wavelet is given as

Ψτ, f (t) =
√

f exp(i2π f (t − τ)) exp
(
− (t − τ)2

2σ2

)
, (4)

where σ is the standard deviation.
It follows that the instantaneous phase difference between

x(t) and y(t) can be described with the wavelet coefficients
as

exp(i(φx(τ, f ) − φy(τ, f ))) =
Wx(τ, f )W∗y (τ, f )

|Wx(τ, f )Wy(τ, f )| , (5)

where φx(τ, f ) and φy(τ, f ) are the phase components of
Wx(τ, f ) and Wy(τ, f ), respectively.

B. BEMD

Empirical Mode Decomposition (EMD) [9], [14], [?] is
a data-driven signal decomposition. This technique decom-
poses a signal into several waveforms modulated with both
amplitude and frequency. Each decomposed waveform is
called as Intrinsic Mode Function (IMF) [9], [14]. The
important feature of the EMD is that the number of IMFs
and the spectrum of IMFs are fully dependent on the original
signal [9].

An extension of the EMD to bivariate data is the Bivariate
Empirical Mode Decomposition (BEMD) which is suitable
for dealing with a bivariate time series [6], [7]. The BEMD
decomposes two signals to a pair of the same number of
IMFs.

The algorithm of BEMD for two signals x1(t) and x2(t)
can be given as follows [6]:

1) Compose a complex signal, C(t) = x1(t) + ix2(t).
2) For 1 < m < M,

a) Project C(t) on direction φm as pφm = �(e−iφmC(t));
b) Extract the maxima of pφm (t) from (tm

i , p
m
i );

c) Interpolate the set of points (tm
i , e

iφm pm
i ) to obtain

the 3-dimensional envelope curve in direction φm

named eφm (t).

Fig. 1. Real and imaginary part of spectra of the IMFs obtained from
two independent Gaussian white noises with the BEMD are indicated as
signal1 (top) and signal2 (bottom). It can be observed that each IMF is
almost band-limited.

3) Compute the mean of all tangents e(t) = 2
M
∑

m eφm (t).
4) Subtract the mean to obtain d(t) = C(t) − e(t).
5) Test if d(t) satisfies the conditions of IMF,

• If yes, repeat the procedure from the step 2 on the
residual signal.

• If not, replace x(t) with d(t) and repeat the proce-
dure from step 2.

In summary, the BEMD can be expressed as

C(t) =
∑

k

dk(t) + r(t), (6)

where dk(t) is the k−th complex IMF and r(t) is the residuum.
An example of spectra of IMFs via BEMD is illustrated in
Fig. 1.

C. Hilbert transform
From each component of dk(t), the instantaneous phase

should be extracted. Indeed, we can obtain the instantaneous
phase from an IMF as follows. A real signal can be expressed
as

x(t) = a(t)�(exp iφ(t)), (7)

where a(t) is the instantaneous amplitude and φ(t) is the
instantaneous phase, which are given as

a(t) =
√

x2(t) + (H[x(t)])2, (8)

φ(t) = arctan
(

H[x(t)]
x(t)

)
. (9)

where H[x(t)] is the Hilbert transform of x(t) [8], yielding
z(t) = x(t) + iH[x(t)] called the analytic signal of x(t). The
derivative of φ(t) is the instantaneous frequency.

IV. ExperimentalMethods
A. Subjects and stimuli

We analyzed the EEG data during Dynamical Dot Quartet
tasks, which were obtained in the Laboratory for Rhythm-
Based Brain Information Processing Unit, RIKEN Brain
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a b c

Fig. 2. Dynamical Dot Quartet (DDQ) stimulus layout [12]. a, b: Two
diagonal tokens (filled white circles; diameter: 0.6875◦). The horizontal and
vertical distances between dots from center to center were 6.4101◦ and
7.8943◦, respectively (aspect ratio, 1:1.2315). c: Fixation square.

Fig. 3. The location of electrodes. (the international 10/10 system [15])

Science Institute. Sixteen healthy volunteers (age 20–43)
took part in this experiment. The subjects were seated on
a chair and watched a computer monitor.

The subjects tasks were given as follows.
1) The subjects gaze at a fixation square exhibited in the

middle throughout each experimental run as shown in
Fig. 2 for 10 sec.

2) Two diagonal tokens as illustrated in Fig. 2a were
presented for 250 ms and were then replaced by the
other tokens as illustrated in Fig. 2b for 250 ms. These
two patterns of diagonal tokens were alternatively
presented for 60 sec.

3) Subjects were asked to keep pushing a button only
while the stimulus is perceived as moving horizontally.

Each subject conducted these tasks twice. If the subjects
never push the button at a trial, the data at that trial were
removed.

B. Data acquisition

EEG signals were recorded with 64 Ag/AgCl electrodes at
position illustrated in Fig. 3. The EEG signals were amplified
by BrainAmp MR plus (Brain Products) and filtered in the
frequency band of 0.1–100 Hz. Moreover, we subtracted
reference EEG signals which were placed on the right and
lef lobes. The sampling rate was 1000 Hz.

C. SPLV with Wavelet and BEMD: wPLV and iPLV

We calculate the SPLV values of a pair of signals by
using the Gabor wavelet and the BEMD, as mentioned in the

previous section. Referring to [11], we analyzed the phase
synchrony in a pair of electrodes, P5–P6, P7–P8, PO7–PO8,
and TP7–TP8.

With the complex Gabor wavelet, we apply the same
method as [12], that is, we calculated wavelet coefficients
for frequencies f = 31, 32, . . . , 45 Hz, yielding SPLV( f , t).
Then, we define a time series of SPLV as

wPLV(t) =
1
15

45∑
f=31

SPLV( f , t). (10)

By using the BEMD, we also calculate SPLV of the IMF
that has the peak in the range of 31–45 Hz. This time series
is denoted by iPLV(t). Note that there may exist more than
one IMF that has the peak in this range of frequencies1. In
this case, we choose one of those IMFs.

V. Results and Discussion
By this experiment, we would like to confirm the variation

of PLV while subjects have the perception as the horizontal
dots motion. It has been found [11], [12] that the PLV
between electrodes on both hemisphere increases.

Our analysis suggested that iPLV(t) with BEMD works
more efficiently in detecting the perception of horizontal
movement than wPLV(t) with the Gabor wavelet. We chose
σ = 8/ f , and wavelet window length was 1000σ. Detailed
results and discussions are given as follows.

Figure 4 shows the evolutions of the SPLV (iPLV(t) and
wPLV(t)) for the 16-th subject. The shaded area indicates
periods when the subject perceived the visual stimulus as
horizontal motion, that is, when the subject kept pushing the
button. We denote this period by HPn and the other period
by OPn, where n is the index. In the case of Fig. 4, the 16th
subject has the sequence of perception: OP1, HP1, OP2, HP2,
OP3, HP3, OP4, HP4, OP5. In order to enhance the variation
of SPLV, we plot in Fig. 5 the values of SPLV averaged over
either HPn or OPn. For example, we denote the average of
iPLV(t) over HPn by iPLV(HPn). In Fig. 5, we observe the
increase of iPLV(HPn) at HP1, HP2, and HP4. On the other
hand, wPLV(t) increased very slightly at only HP2.

The number of the increase of SPLV was counted in
all experimental sessions for all subjects. Specifically, we
counted the number of “successes” which are the cases where

SPLV(OPn) < SPLV(HPn).

Throughout all experimental runs for all the subjects, we
observed the perception of horizontal motion 55 times.
Figure 6 lists the ratio of the number of successes to 55
in percent. In both methods, we varied the length of the
smoothing window, T , from 5 ms to 1000 ms. It can be seen
that for all cases, SPLV with the BEMD (iPLV(t)) showed
more accurate detection of the horizontal motion perception.
The maximum percentage in the case of wPLV(t) was 58.1
%, when T = 50 ms and a pair of electrodes was P7–P8,
while in the case of iPLV(t), the maximum was 83.6 %,
when T = 50 ms and a pair of electrodes was P5–P6.

1Our experiment suggested that usually we obtained only one or at most
two IMFs in this range.
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Fig. 4. Time evolution of SPLV for the second trial data of the 16th
subject. Shaded sections indicate the period for horizontal perception, HPn.
The upper panel shows iPLV(t), and the lower panel shows wPLV(t). The
length of the smoothing window was 500 ms, and the pair of electrodes
was P5–P6.

Fig. 5. The averaged values of iPLV(t) and wPLV(t) over each period for
the data shown in Fig. 4. The upper panel shows the averages for iPLV(t),
and the lower panel for wPLV(t).
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