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Abstract— This paper presents a simple and effective method-
ology for mental task classification using a novel variation of the
empirical mode decomposition (EMD) algorithm and the Tea-
ger energy operator applied to electroencephalography (EEG)
signals. EEG signals corresponding to various types of mental
tasks performed by human subjects are decomposed using
the variation of EMD, called Empirical Mode Decomposition-
Modified Peak Selection (EMD-MPS), which allows direct
separation of the signals into a de-trended component, and
a trend, according to a frequency separation criterion. Teager
energy operator is then applied to calculate the average energy
values of both components obtained after signal decomposition
using EMD-MPS. These energy values are used to construct
feature vectors, and one-versus-one classification of mental
tasks is performed using a simple classifier, namely the 1-
NN classifier. An average correct classification rate of 87%
is obtained, improving on previous results and thereby also
demonstrating the effectiveness of the methodology.

I. INTRODUCTION

In the context of various actions that can be taken by a
brain-computer interface, such as computer cursor movement
or selection of a letter for a typing task, identification of
patterns in EEG signals corresponding to various types of
mental tasks performed by human subjects can have impor-
tant applications [1]. Given the non-stationary and non-linear
nature of EEG signals, signal processing techniques such as
empirical mode decomposition (EMD) [2] lend themselves
well to EEG signal analysis, including analysis for mental
task classification [3][4][5].
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Fig. 1. Schematic representation of the methodology described in this
paper.

The EMD algorithm decomposes a signal into intrinsic
mode functions (IMFs), which are obtained by adaptive ex-
traction of all the oscillatory modes present in a signal using
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a process called sifting [2]. The sifting process considers the
oscillatory modes in the signal at the most local time-scale,
which is defined by two consecutive extrema (peaks). Hence
identification of all the extrema in the signal is an important
part of the sifting process. This also means that a change in
the choice of extrema will result in limiting the time-scale
over which the sifting process allows an oscillatory mode in
the signal to pass un-decomposed.

Exploiting the idea of selective extrema selection, we
previously proposed a modification to the EMD algorithm
[6], which we now call empirical mode decomposition-
modified peak selection (EMD-MPS) [7]. In the EMD-MPS
method, the sifting process uses intelligent peak selection in
short-time windows of length τ . Based on different values
of τ , different decompositions of a signal into what we
term as τ -functions are possible. Therefore the short-time
window acts as an operator which allows separation of
different frequency components in a signal into τ -functions,
as determined by the length τ of the short-time window. We
have previously established a relation between the frequency
components decomposed and the value of τ , and have shown
that using an appropriate selection of values of τ allows a
novel time-scale based de-trending of signals [6][7].

Another useful tool for non-stationary signal analysis
comes in the form of the Teager-Kaiser energy operator
(TEO) [8]. The TEO is a non-linear operator that can be
used for energy estimation of amplitude-frequency (AM-FM)
modulated representations of a non-stationary signal. There
is precedent of using EMD in conjunction with the TEO for
non-stationary signal analysis, also in context of mental task
classification [4].

In this paper, we present a novel method for mental task
classification based on application of EMD-MPS and TEO
on EEG signals. EMD-MPS is used to decompose the EEG
signals into two τ -functions representing the trend and a de-
trended component. TEO is applied to both τ -functions to
obtain values of the average energy, which are used to form
the feature vectors. One-versus-one classification of mental
tasks using these feature vectors is performed with a 1-NN
classifier [9]. The overall methodology is represented in the
diagram shown in Fig. 1.

The novel method presented in this paper achieves an
average correct classification rate of 87% for a one-versus-
one classification scheme, improving on previous results
using similar methodologies on the same EEG signals [3][4].
At the same time, this method is characterized by the
simplicity of the decomposition, feature extraction, as well
as classification. The next sections will provide more details
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Fig. 2. (Left) EEG signal from Subject 1 performing Task 2. (Middle) τ -function T1, representing de-trended signal. (Right) τ -function T2, representing
the trend. These τ -functions have been obtained using a value of τ=31.25 (τ̂=14), corresponding to a frequency separation value of F=8 Hz.

of the proposed method.

II. EMPIRICAL MODE DECOMPOSITION-MODIFIED PEAK
SELECTION

EMD-MPS uses the sifting process to decompose a signal.
However, a criterion for choosing the extrema based on
short-time windows of length τ is used, instead of using
a time-scale based on successive extrema, as is done in
the case of EMD. Let us define an operator W τ

i (·), i =
1...k, i ∈ Z, 0 < τ < L,L ∈ R, which, given a signal
x[n] of length L, produces the i-th τ -function Ti, such that
Ti[n] = W τ

i (x[n]). This can be explained as:
1) For a given signal x[n], a short-time window length

denoted by τ is chosen, and for each interval τ over
the whole signal, the highest/lowest from among the
maxima and minima within τ are selected.

2) The upper and lower envelopes, En(U) and En(L),
are calculated by using a cubic spline to connect all
the maxima/minima identified (one maxima/minima or
peak per τ ).

3) The mean En(mean) of the upper and lower envelopes
is calculated, and x[n] is updated by subtracting the
mean from it x[n]← x[n]− En(mean).

Similar to EMD-based sifting, step 3 is continued till a
stopping criterion is met, at which point x[n] is reduced
to a τ -function. The τ -function is subtracted from x[n] to
get a residue, which is then taken as the starting point
instead of x[n], and previous steps of the algorithm are
repeated to find all the τ -functions Ti in the signal. Unlike
IMFs extracted by the EMD algorithm, the coarse-grained
τ -functions may contain different coexisting modes of oscil-
lation, each superimposed on the other. This happens since
the short-time window τ sets an upper limit on the periods
of the oscillations that can be included in any given τ -
function obtained using the EMD-MPS method. This limit
is determined by :

F =
Fs
τ

(1)

where Fs represents the sampling frequency.
As an example for this relation, a value of τ=25 (in sam-

ples) corresponds to a frequency value F=40 samples/second
for Fs=1000 samples/second. Using this value of τ , only one

peak (maxima and minima each) in each 25 sample interval
will be used in the envelope formation, and the sifting
process should then decompose all F ≤ 40 samples/second
oscillatory components, and let all components with F >
40 samples/second pass through un-decomposed in one τ -
function. Due to the non-linear nature of decomposition and
mode-mixing phenomenon [2], the frequency separation does
not represent a sharp cut-off. Additionally, in practice the
value of τ is qualified by a scaling constant k, such that
τ̂ = kτ , and 0 < k ≤ 1. The relation in Eq. 1 and the scaling
constant k have been empirically validated using fractional
Gaussian noise in our previous works [7].

III. METHOD

The next subsections will present different aspects of the
methodology for mental task classification.

A. Data

The data used in this paper is in the form of EEG signals
recorded on 7 subjects, who performed five tasks each. These
tasks were 1) baseline task, which required subjects to relax
and think of nothing in particular; 2) multiplication task,
involving mental multiplication of 2 multi-digit numbers; 3)
letter task, in which subjects mentally composed a letter
without vocalizing; 4) rotation task, requiring subjects to
visualize a three dimensional object being rotated; finally,
5) counting task, in which subjects imagined a blackboard
with numbers being written on it. The subjects performed
the tasks in ten trials each over two days, and for each
trial, EEG was recorded from six electrodes at positions
(C3, C4, P3, P4, O1, O2) for ten seconds at a frequency of
250 samples per second. For the experiments in this paper,
five trials of each task performed by all subjects were used.
Further details about the data are available in [1], and the
data is also available for public download1.

B. Decomposition using EMD-MPS

EMD-MPS is used for a time-scale based de-trending of
EEG signals, such that each EEG signals is decomposed
into two τ -functions, one representing the de-trended signal
containing the higher frequency components, and the other

1http://www.cs.colostate.edu/eeg/
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representing the low frequency trend of the signal. This is
done by appropriate selection of a value of τ according to
Eq. 1, and does not require estimation of a trend model
for model-based de-trending, or knowledge of the statistical
properties of IMFs, as is the case of EMD-based de-trending
approaches proposed in literature, e.g. [10][11].

For de-trending of EEG signals used in this study, we
used two different values of τ , to obtain two different sets
of τ -functions, containing frequency components separated
according to Eq. 1. The first value of τ corresponds to a fre-
quency value F=8 Hz, such that the τ -function T1 contains
frequency components with frequency values greater than 8
Hz, and the τ -function T2 represents the trend containing
frequencies lower than 8 Hz. Using Eq. 1 and sampling
frequency value Fs = 250 Hz, the value of τ obtained is
given by τ=31.25. However, for decomposition, we have
to use the value τ̂ , which is τ scaled by a constant k
as described in Section II. A good estimate for the value
of k is given by k ≈ 0.44 [6][7], such that τ=31.25
corresponds to τ̂=14. Similarly, the other set of τ -functions
are obtained corresponding to F=4 Hz, such that τ=62.5,
with the corresponding τ̂=28.

All EEG signals used in this study were decomposed using
EMD-MPS using these two values of τ̂ . In this regard, Fig.
2 shows an example EEG signal, and the τ -functions T1 and
T2 obtained with a value of τ̂ = 14.

C. Feature Extraction and Classification

After the decomposition of EEG signals (6 EEG signals
per subject per task, with 5 trials of each task), the TEO
was applied to each of the two τ -functions obtained per
EEG signal to estimate the average Teager energy of each
τ -function.

The TEO was developed from the point of view of the
energy required to generate a signal. This non-linear energy-
tracking operator Ψ is given in its discrete form [8] as:
Ψ(x[n]) = x2[n]− x[n+ 1] · x[n− 1].

The TEO is nearly instantaneous, given that only three
samples are required for computing the energy at a given
time instant. This also makes the operator easy to implement
efficiently. The average Teager energy, ei, for a τ -function
Ti is calculated as:

ei =
1

N

N∑
n=1

| Ψ[Ti(n)] | (2)

where N is equal to the number of samples in the τ -
functions, Ψ[·] is the discrete-time TEO and i = 1, 2.

The average Teager energy ei is calculated for each τ -
function according to Eq. 2. This way, for each EEG signal,
we have two values of ei corresponding to each τ -function
Ti. Given that 6 EEG signals per task are used, the feature
vector contains 12 elements consisting of the average Teager
energy values. This is a significant reduction in feature vector
dimension compared to our previous work [4], and other
related works [3][5].

The feature vectors obtained for the tasks were used in a
one-versus-one classification scheme using a 1-NN classifier.
The classification accuracy for each task combination was
estimated using the tenfold cross-validation method. The
classification results are discussed in the next section.

IV. RESULTS

The classification results obtained with the methodology
presented in this paper are shown in Table I. The classifica-
tion accuracy for different task combinations listed in Table I
has been obtained using τ -functions extracted with both val-
ues of τ̂ used in the analysis. It can be seen from Table I that
the classification accuracy for most of the task combinations
is greater than 80%, with many task combinations having a
classification accuracy of 100%. This is true for both values
of τ̂ used for decomposition using EMD-MPS. However,
for subjects 3 and 6, the average classification accuracy for
all task combinations is considerably higher for a value of
τ̂=14, compared to a value of τ̂=28. For other subjects, the
difference in average classification accuracy over all tasks
using both values of τ̂ is not large. Overall, the average
classification accuracy obtained with τ̂=14 is 86.8%, which
is about 3% better than that obtained with τ̂=28, and is higher
than previously reported works [3][4][5].

The average classification accuracy for subject 3 is rel-
atively low, having a value of 70%. This is due to three
task-combinations having a low classification accuracy of
50%. For these task combinations, the following approach
was used as a remedial measure. For both values of τ̂ , the
feature vectors obtained from τ -functions T1 and T2 were
used independently for classification. For the math-count
task combination, the classification accuracy increased from
50% to 80% when only the feature vector obtained from
T2 extracted with τ̂=14 was used. There was no change
in the classification accuracy for the other two tasks, using
either τ -function obtained with either value of τ̂ . Therefore,
decomposition was performed using a lower value of τ̂=7,
which corresponds to a frequency separation value of F=16
Hz. For this value of τ̂ , there was no change in classification
accuracy for the task combinations rot-count and letter-count
using feature vectors from both T1 and T2 together, or the
feature vector from T2 individually. However, using only the
feature vector obtained from T1, the classification accuracy
increased to 70% and 60% for the rot-count and letter-count
task combinations respectively.

This shows that for rot-count and letter-count task com-
binations in case of subject 3, the de-trended component T1

containing the higher frequency components of the signals
leads to better classification accuracy, whereas the lower
frequency signal trend contained in T2 is more relevant for
the math-count task combination. Importantly, the used τ -
functions in this case were obtained with different values
of τ̂ . This also demonstrates the flexibility of the method,
whereby decomposition can be adapted to different time-
scales, and either of the de-trended component, or the trend,
can be used to extract discriminatory features for classifica-
tion.
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TABLE I
CLASSIFICATION ACCURACY FOR ONE-VERSUS-ONE CLASSIFICATION OF MENTAL TASKS FOR ALL SUBJECTS USING 1-NN

CLASSIFIER AND 10-FOLD CROSS-VALIDATION

Task Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Mean
combination τ̂=14 τ̂=28 τ̂=14 τ̂=28 τ̂=14 τ̂=28 τ̂=14 τ̂=28 τ̂=14 τ̂=28 τ̂=14 τ̂=28 τ̂=14 τ̂=28 τ̂=14 τ̂=28
base-count 100% 100% 90% 90% 80% 60 % 100% 100% 70% 70% 90% 80% 90% 90% 88.6% 84.3%
base-letter 90% 90% 100% 100% 90% 90% 90% 100% 90% 70% 90% 50% 90% 70% 91.4% 81.4%
base-math 90% 100% 80% 90% 90% 70% 80% 100% 70% 80% 90% 90% 80% 90% 82.8% 88.6%
base-rot 100% 100% 90% 100% 60% 60% 80% 80% 80% 80% 90% 100% 100% 100% 85.7% 88.6%

letter-count 100% 100% 60% 90% 50% 50% 100% 100% 70% 70% 90% 80% 100% 80% 81.4% 81.4%
letter-rot 100% 100% 100% 100% 60% 70% 80% 60% 90% 90% 100% 90% 100% 100% 90% 87.1%

math-count 100% 100% 70% 60% 50% 50% 80% 70% 60% 60% 100% 100% 100% 100% 80% 77.1%
math-letter 100% 100% 100% 100% 80% 80% 100% 90% 100% 100% 100% 100% 100% 100% 97.1% 95.7%
math-rot 100% 100% 90% 90% 90% 60% 80% 60% 80% 90% 100% 70% 80% 90% 88.6% 80%
rot-count 80% 70% 100% 80% 50% 40% 80% 90% 70% 70% 100% 100% 100% 100% 82.8% 78.6%
Average 96% 96% 88% 90% 70% 63% 87% 85% 78% 78% 95% 86% 94% 92% 86.8% 84.3%
Tasks: base=baseline; math=multiplication; rot=rotation; count=counting;

The average classification accuracy of nearly 87% ob-
tained in this work improves on the classification accuracy
of 85% reported in our previous work [4]. However, the
methodology presented in this paper (denoted by A) im-
proves on our previous approach (denoted by B) in the
following ways:

1) B uses EMD to decompose the EEG signals into
at most log2(N) IMFs [2], where N is the length
of the signals. On the other hand, A uses EMD-
MPS to decompose the signals into two τ -functions,
which makes the decomposition computationally more
efficient.

2) B obtains the de-trended part of the signal and the
signal trend by partial reconstruction based on check-
ing a criterion. This criterion needs to be checked
for every set of signals, and will change for different
sets, e.g. if signal lengths are different. A, however,
uses time-scale based de-trending of signals, which
separates the trend according to a frequency separation
criterion. Not needing to check a criterion, and not
having to perform partial reconstruction after decom-
position, makes A more computationally efficient and,
importantly, portable to different signal types.

3) B uses two feature vectors of dimensions 30 and 18,
whereas both feature vectors used in A have dimension
12. The improvement in classification accuracy in A is
obtained with a reduced dimension feature vector.

4) Importantly, A allows flexibility in feature extraction,
by allowing different time-scale based decompositions,
to deal with difficult classification cases, as demon-
strated earlier in this section. This is a unique feature
of the methodology.

V. CONCLUSIONS

This paper presented a simple and effective method for
mental task classification using a novel variation of empirical
mode decomposition in conjunction with the Teager energy
operator. Our method is distinguished by the simplicity
and flexibility of the decomposition, as well as the low
dimensions of the feature vector. The efficacy of the feature
vectors obtained is demonstrated by the high classification
accuracy for one-versus-one mental task classification using

a simple classifier. The average classification accuracy ob-
tained is higher than previously reported results using similar
approaches on the same data.
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