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ABSTRACT
Local Field Potential (LFP) recordings are one type of intra-
cortical recordings, (besides Single Unit Activity) that can
help decode movement direction successfully. In the long-
term however, using LFPs for decoding presents some ma-
jor challenges like inherent instability and non-stationarity.
Our approach to overcome this challenge bases around the
hypothesis that each task has a signature source-location
pattern. The methodology involves introduction of source
localization, and tracking of sources over a period of time
that enables us to decode movement direction in an eight-
direction center-out-reach-task. We establish that such track-
ing can be used for long term decoding, with preliminary
results indicating consistent patterns. In fact, tracking task
related source locations render up to 66% accuracy in
decoding movement direction one week after the decoding
model was learnt.

Index Terms— Sparse Source Localization, Local Field
Potentials, Movement Decoding.

I. INTRODUCTION
One of the main problems with using single unit activity

or local field potentials for long term task decoding is their
inherent instability and non-stationarity [1]. Only a fraction
of the recorded sites remains stable over two weeks [2],
making it difficult to obtain long term decoding. Since
most of the pattern recognition techniques developed to
decode the behavioral tasks depend on the consistency and
stability of observed data, they fail to provide good long term
decoding. Also, most reported literature uses cross-validation
to evaluate algorithms, providing an optimistic estimate of
the achievable decoding [3], [4]. While studies show the
reliable intracortical recordings over hundreds of days, daily
retraining is needed to obtain consistent decoding [5].

Our hypothesis is that behavioral tasks are defined by
certain consistent and stable underlying patterns. In this
paper, we propose that these patterns are defined by sources
that generate local field potentials. We provide evidence that
by tracking their trajectories over trial time, arm movement
decoding can be achieved. During this study, we observe that
the source locations and their trajectories remain consistent
over time and thus enable the decoding of these tasks without
the need of retraining.

In the past, several techniques like Minimum Norm So-
lution, Weighted Minimum Norm Solution, Low resolution
brain tomography analysis (LORETA) and standardized-
LORETA (s-LORETA) [6], [7], have been proposed to
estimate the source locations for neural signal recording
modalities like EEG, MEG, and ECoG data. In these tech-
niques, the solution is obtained by solving a linear system
of dipole lead-field projections of all possible locations of
dipoles on a given sensor arrangement. The drawback of
these techniques is that they provide solutions that spread
the energy over all source locations, as there are more source
locations than the total number of sensors for the observed
signal. This makes the system under-determined and leads to
an infinite number of solutions. To obtain a more meaningful
solution we constrain the problem to a sparse space, under
the assumption that only a few active sources are active at
any time instant; solutions to which can be obtained with
algorithms like LASSO, Focal Underdetermined System
Solver (FOCUSS) etc.[8]. Most of the methods enforce
sparse formulation on the three dipole moment coordinates
and this tends to bias the dipole location towards a certain
moment coordinate componenet. Hence, we use a solution
that is invariant to the rotations of dipole moments but the
total dipole moment is constrained [9], [10]. While these
methods constrain the overall dipole distribution to be sparse,
the dipole moment at certain locations can reach values that
are physiologically infeasible. In our formulation, we specif-
ically ensure that dipole moment at all locations is under a
physiological bound. By focussing only on the location of
these estimated dipoles at successive time-instants we can
overcome the instability due to the variation of dynamic
range over multiple days. In this paper, we show that this
strategy is successful to decode movement direction over two
weeks after the model training is performed.

The paper is organized in the following way: Section II
describes the neural signal acquisition and behavioral tasks
performed by the monkey subjects; Section III discusses
the algorithm for sparse source estimation and the decoding
algorithm to decode the neural data; Section IV presents the
preliminary results that were obtained using the proposed al-
gorithm and a comparison with the state-of-the-art methods;
Section V provides concluding remarks and some suggested
future work.
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II. DATA
Two male rhesus monkeys (H464, H564) were trained to

perform the center-out-target-reach task with a robotic ma-
nipulandum. The subjects were implanted in the primary and
dorsal premotor areas with two 64-grid Utah microelectrode
arrays. Each array was arranged on a 10× 10 grid of width
4mm with equal separation between the electrodes. The
experimental paradigm and the preprocessing are the same
as in [11]. For monkey H464, the sessions were performed
over a two week period with the following chronology:
session 1 on day 1, sessions 2 and 3 a week from session 1
and sessions 4 and 5 two weeks from session 1. For the
monkey H564, only three such sessions were performed
before it progressed to another experiment. All the trials
in a particular session were presented to the subject in a
randomized order. Figure 1 shows the pseudo-random time
spent by the subject at each cue of a single trial. At the
successful completion of such a trial subjects were given
a juice reward and only these trials were included in the
analysis. The number of successful trials depended on the
motivation of the monkey, varying from 10 per direction
in the least successful session to 35 per direction in the
most successful one. During the preprocessing stage, time-
frequency analysis and histograms were used to remove
channels that had low Signal to Noise Ratio (SNR) or high
baseline wander, thus retaining 61 channels for H464 and
98 for H564. The next section discusses the algorithm used
for decoding movement directions.

III. ALGORITHM
The hypothesis of our approach is that each neural task has

certain underlying sources. First, we discuss the algorithm
to perform the sparse source localization from the observed
neural recordings.

III-A. Source Localization
We begin the source localization algorithm description

with the classical framework used for source estimation.
y = Ax (1)

where y ∈ RM is signal observed on M sensors at a single
time instant, x ∈ R3N is a vector of dipole intensities
at N potential dipole locations, with dipole moments in 3
dimensions and A ∈ RM×3N is the lead-field matrix for the
sources. We choose the dipole source model as it provides

Fig. 1: Time-line of the neural data to be used in the analysis.

an easily interpretable model. In general, N >> M , making
the linear system under-constrained and thus has an infinite
solution space. Since it is assumed that only a few of the
sources are active at any given time, they can be identified
by adding a sparsity constraint. The l0 norm is a non-
convex constraint and the l1 norm is chosen as a closer
approximation to enforce sparsity.

The solution for these equations can be formulated as
follows:

x̂ = min ‖y −Ax‖2 + λ‖x‖1 (2)
where λ is a regularization parameter to incorporate spar-
sity with the l1-norm constraint. Please note that x =
[ρ1x, ρ

1
y, ρ

1
z, ..., ρ

N
x , ρ

N
y , ρ

N
z ], where ρ represents the dipole

moment in each of the 3 dimensions. The above formulation
provides a solution by enforcing the constraint on all the
moment dimensions. To provide a constraint that is invariant
to the rotations in these dimensions, we use a slightly
modified version as shown below [10].

x̂ = min ‖y −Ax‖2 + λ‖ρ‖1, (3)
where ρ ∈ RN is the absolute moment at a given location,
defined as

ρ(n) =
√
ρnx

2 + ρny
2 + ρnz

2 (4)

Since gradient based methods cannot be directly applied
to the problem in 3, as it is not differentiable at zero, we
convert it into a reduced second-order cone programming
(SOCP) problem:

{x̂, q̂, ẑ} = min q + λz, (5)

s.t. ‖y −Ax‖2 ≤ q,
∑

ρ(n) ≤ z
∀ρ(n) < ρmax

where λ is the regularization parameter that addresses the
balance between the number of dipoles used in the solution
and the reconstruction error. The parameters q and z are
introduced to convert the problem into a linear problem
with second-order cone constraints. ρmax is a physiological
bound on the dipole moments at all locations. Equation (5)
is a convex problem and can be solved efficiently using the
primal-dual interior-point method implemented by the Self
Dual Minimization software (SeDuMi) [12].

III-B. Decoding

As mentioned in section II, each task involves the move-
ment of arm over time and neural signal is acquired over
multiple time instants. Consider Y = [y1y2...yT ] ∈ RM×T ,
be the neural recordings observed at T time samples of
the behavioral task. Once the dipole location for each time
instant is estimated, we retain the dipole the location and
intensity as a feature. The value of λ is chosen to provide
the best decoding in the training trials in terms of the area
under the receiver operator curve (AUC).

We identified spatial and temporal locations that provide
the best discrimination. For example, figure 3 shows the area
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under the curve (for classification of 0◦and 90◦) at different
spatial locations over 1s of trial time after the movement
onset. Only the features that have area under the curve more
than 0.9 are retained and used for classification. A linear
support vector machine (SVM) is trained on these features to
obtain the decoding model. We used multiple and redundant
binary classifiers in error correction output codes (ECOC)
framework [11]. In such a framework, all possible 1-vs-
1 classifiers are trained, along with hierarchical classifiers
where neighboring directions are pooled into a super class.
For every new trial that needs to be decoded, sparse source
locations are estimated using the same procedure and the
SVM model is used to decode movement of the trial, based
on these features.

IV. RESULTS
In our analysis, we have neural measurements from the

primary motor and the premotor grid areas with the aid of
two planar sensor arrangements as mentioned in section II.
We use the dipole forward model to calculate the lead-field
matrix for each of the two grids separately and assume that
the dipoles closer to the primary motor area do not influence
the sensors on the premotor area and vice-versa. When an
arrangement with multiple planeswas tested, the solutions
lied only on the plane closest to the sensor grid. Hence, only
the dipoles located on the same plane, parallel to the sensor
grid arrangement are estimated. Based on such a formulation
the lead-field matrix for both the grids can be written as

A =

[
Apri 0
0 Apre

]
(6)

where Apri and Apre are the lead-field matrices for the
primary motor area and premotor area respectively.

The spatial resolution of the dipole location is chosen to
be half the inter-electrode distance. This resolution of the
sources can be increased at the expense of processing time.
However, we observed only slight improvement when the
resolution was further increased. We chose the value of λ that
provided the minimum cross-validation error on the training
session. We also observed that certain spatial locations have
active dipoles up to the onset of movement and these
locations become inactive once the movement begins. This
behavior is especially observed in dipoles from the premotor

Fig. 2: The behavior of certain dipoles before movement onset.
Each sub figure represents the dipole grid near the primary motor
area at the time instant. The color of the figure is scaled such that
deep red indicates high number of trials that had an active dipole
in a particular location at that instant and deep blue indicates no
active dipoles. As seen in this figure, the dipoles in the bottom right
of the grid are active in most of the trials, only up to the movement
onset (0s) and are inactive after that.

Table I: Comparison of Decoding Powers across various algorithms
for H464 and H564. The decoding models are trained on the 1st

day and tested on sessions conducted after about a week and two.

H464
Day after Training 8 9 13 14
CSP [13] 38% 41% 16% 13%
Rank CSP [11] 62% 60% 48% 39%
Dipole Tracking 66% 61% 44% 42%
H564
Day after Training 8 9
CSP [13] 41% 40%
Rank CSP [11] 51% 49%
Dipole Tracking 50% 42%

area, which remain predominantly inactive during movement
but are active before the movement onset and also after
the target is reached. An example of such a behavior is
shown in Figure 2. Another interesting observation is that
the maximum decoding (high AUC) occurs right after the
movement is onset as can be inferred from Figure 3.

To evaluate our algorithm we trained the model on the
trials only from session on day 1. For this purpose, the
recordings were filtered in the δ-band (0-4Hz) and 1s of data
after the movement onset is analysed as shown in Figure 1.
The models were trained on data collected on day 1 and their
performance was evaluated on data collected in the future
sessions. The measure used for comparison is the decoding
power (or decoding accuracy) and is defined as the ratio of
number of correctly predicted trials to the total number of
trials. The decoding performance from source estimation is
compared with results from state-of-the-art techniques like
common spatial patterns (CSP) and its variants. To maintain
consistency and have a good comparison, we use the same
ECOC classifiers for CSP and source decoding techniques.
For classification by chance, the decoding power is 12.5%
for a set of eight targets.

Table I compares the decoding power of the suggested
method with those obtained by CSP [13]. From the table we
can infer that the model provided by estimating the dipole lo-
cations provides better decoding. The CSP algorithm overfits
the training data as it relies on the raw neural recording and
does not consider the effects of non-stationarity, instability
and learning that modulate and alter the neural patterns from
day-to-day. By considering only the spatial locations and the
trajectories of the active dipoles for each task, the proposed
method overcomes the changes in dynamic range similar to
the Rank CSP [11]. Thus, it is able to obtain comparable
decoding powers over a two week time-line.

V. CONCLUSION
In this paper, we have provided a new formulation to

decode the movement directions based on the estimates
of the dipole source locations. Specifically, we show that
each of the neural task is performed by sequential dipole
activations in a certain pattern. These patterns are unique
to the movement task and can be used to reliably decode
movement directions. Further, these patterns are very stable
and based on this hypothesis, we provide evidence that
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Fig. 3: The discrimination ability, in terms of AUC between movements to targets at 0◦and 90◦, of the spatial and temporal dipole
intensities for monkey H464 in session 1. Each sub figure represents the dipole grid near the primary motor area at the time instant
indicated above it. These are aligned such that the movement onset is at 0ms. The color of the figure is scaled - deep red indicates high
degree of discriminationand deep blue no discrimination.

tracking such source locations can decode 8 movement
directions with an accuracy of up to 66% in subsequent ses-
sions. These preliminary results are encouraging and further
improvements can be pursued. One such improvement is to
obtain a solution that is temporally smooth, rather than a
separate solution for each time instant as suggested here.

The tracking of dipole activations can also throw light on
the effects of learning and the changes in neural patterns over
a long time. Further analysis is needed in understanding the
changes in the dipole activation patterns when a new task
is introduced to the subject. Also, while the focus of the
analysis in this paper has been on movement onset epoch, a
similar analysis can be extended to epochs of target planning
before the actual movements.
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