
  

 

Abstract— In this paper, we present a hardware 
implementation of a second order Laguerre Expansion of 
Volterra Kernel (LEV) model with four basis functions. The 
model is versatile enough to be applied at different abstraction 
levels (synapse, neuron, or network of neurons) and is 
implemented with analog building blocks in a modular manner. 
These analog blocks, realized using low power subthreshold 
CMOS transistors, can serve as a basis for large-scale 
hardware systems that emulate multi-input multi-output 
(MIMO) spike transformations in populations of neurons. The 
normalized mean square error between the signals produced by 
the circuit LEV implementation and the ideal LEV model is 
8.15%. The total power consumption of the analog circuitry is 
less than 33nW. 

 

 

I. INTRODUCTION AND BACKGROUND 

Scientists have often looked to biology for ideas on how 
to solve a multitude of problems, which the biological world 
managed to tackle through years of evolution. The brain’s 
impressive capabilities to perform complex functions, such as 
memory, learning, and cognition, serve as an inspiration, 
while also presenting a major challenge for the engineering 
community, since conventional computing methods have not 
yet allowed us to achieve such functions. One promising 
hypothesis on how to capture the brain’s energy efficiency, 
robustness to noise and errors, and modularity/flexibility is  
building artificial systems in a biomimetic or neuromorphic 
way. 

To construct a biomimetic system, we have to determine 
the essential characteristics that allow the brain to perform 
specific tasks. Since it is still unknown how the collective 
activity of populations of neurons and synapses results in 
higher-level brain functions, choosing the right mechanisms 
to include and finding the proper level of abstraction is 
difficult. Hence, the biomimetic model has to be flexible and 
modular so that it can be adjusted to account for new 
findings, without requiring long redesign times. 

One essential feature of brain computing that is very 
different from traditional computing is that larger networks 
are made up of small modules (neurons with synapses), 
which are of similar composition, but are not precisely the 
same. Large networks in the brain with parallel inputs and 
outputs are made up of many of these slightly different cells, 
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with adjustable features that are activity-dependent 
(potentiation, depression, etc.). These mechanisms provide 
for correction in the presence of error or noise, which allows 
the individual components to be imprecise but adjustable. 
Therefore, the biomimetic model can use adaptive low-power 
imprecise modules instead of precise but power-hungry 
components and satisfy the criteria of compactness, 
modularity (for easy scaling and modification), low power 
and adaptation (programmability).   

The Laguerre Expansion of Volterra Kernel (LEV) model 
can closely approximate most biological and physiological 
systems. It can be applied at different levels of abstraction 
(synapse [1], neuron [2] or network of neurons level [3]) and, 
as demonstrated in this paper, it can be implemented in 
hardware relatively easily in a modular and programmable 
manner. 

In this work, the main goal is to design a hardware model 
that is implantable in the brain (for example, for 
hippocampus prostheses [3]). While software models are very 
flexible, they are neither low-power nor portable and, 
therefore, do not readily lend themselves to implantable 
applications. Hardware systems implemented on FPGA-like 
platforms face the same problems, because they still demand 
a large area and power. 

The advantages of an integrated solution are its 
compactness (maximum density per function as compared to 
FPGAs and software-based solutions) and power efficiency. 
The main disadvantage is that integrated circuits fulfill a 
specific task and once fabricated they cannot be modified. 
Furthermore, the design time can be long. To mitigate these 
problems, we include programmability, which provides more 
flexibility at the cost of more area. Here we present a 
programmable biomimetic LEV hardware model whose 
components are optimized for low power, and a digital 
subsystem that provides calibration and programmability for 
the analog building blocks.  

II. LEV MODEL FOR BIOMIMETIC SYSTEMS 

The Laguerre Expansion of Volterra kernel model can be 
used to approximate a nonlinear time-invariant system with 
finite memory. One example of this is illustrated in [2], 
where the LEV model, in combination with a thresholding 
component, is used to capture the input–output properties of 
single hippocampal CA1 pyramidal neurons based on 
synaptically driven intracellular activity. In [3], the LEV is 
part of a model that captures the multiple-input multiple-
output transformation of spatio-temporal patterns of the 
activity in the hippocampus.  
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The time domain representation of a second order LEV 
model is described by: 
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is the convolution of the nth order Laguerre function with the 
input x(t). The coefficients ck control the amplitudes of the 
Laguerre basis function and allow us to modify the model for 
different applications. These are found during model 
estimation by training the system with a sufficiently long 
input and output training dataset [3]. The Laguerre basis 
functions ln(t) can be scaled in time, depending on the time-
constants of the system to be modeled, by adjusting a single 
parameter p.  

To optimize this model for hardware implementation, it is 
important to minimize complexity while maintaining 
precision in estimation and prediction. For this application, a 
second order LEV model with four basis functions was found 
optimal [1].  

III.  HARDWARE IMPLEMENTATION OF LEV MODEL 

In this section we show how the LEV model can be 
efficiently implemented in hardware using first order filters 
(HLP, HAP), multipliers, and gain cells (weighting block) as 
shown in Figure 1. Because of its modularity, the 
implementation can easily be extended to a higher order or 
large-scale system. The model parameters (filter time 
constants and coefficients of the weighting block) are 
programmable, and adaptive processing techniques can be 
applied to train them. All analog components are 
implemented using transistors in the subthreshold regions 
with bias currents in the orders of tens to hundreds of pico 
Amperes.  

 
Figure 1: LEV System Overview 

A. Basis Function Generation  
The Laguerre basis functions ln(t) are implemented as the 

impulse response of a chain of continuous time analog filters 
with Laplace-domain transfer function: 
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where the subscripts LP and AP denote the low-pass and all-
pass nature of the sections in the frequency domain. The time 
scaling parameter p is determined as part of the model 
training.  

Passive and active filter design techniques can be used to 
implement these sections. Since the time constants of 
physiological systems are large, in a passive realization, the 
RC constants will also be large and considerable silicon area 
will be needed for the resistors or capacitors. OpAmp-RC 
solutions suffer from the same problem. An OTA-C 
realization, however, produces the desired time constants via 
reasonably sized capacitors and very small transconductance 
values, which can easily be adjusted by changing the OTA 
bias currents.  

For a model approximating a physiological signal in real-
time, very small currents, preferably in the pico Ampere 
range, are required, calling for a subthreshold 
implementation. The inherently lower current levels in 
subthreshold translate into low power consumption of the 
circuit, which is critical in biomedical implant applications 
due to risks of overheating and/or tissue burn.  It has been 
demonstrated that even a slight increase in the temperature of 
an implant can change the behavior of its surrounding cells. 
One example is the effect of temperature on NMDA 
receptors’ desensitization and glutamate binding. The 
temperature-dependent changes of the receptor can alter the 
amplitude and time course of NMDA receptor mediated 
postsynaptic currents, which in turn influences synaptic 
plasticity [4]. 

The implementation of HLP(s) is shown in Figure 2 
(dashed box), with transfer function:  
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The all-pass section is implemented using the low-pass (LP) 
module along with additional circuitry (Figure 2).  

 
Figure 2: Controllable All-Pass Filter Implementation 
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The transfer function for the all-pass section is:  
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The bias currents of the OTAs in the low-pass and all-pass 
filters can be adjusted by varying the voltage vadjn.  
 

B. Second Order LEV Component Generation 
To generate the second order components of the LEV 

model, Gilbert cells are used for cross-multiplication. One 
Laguerre polynomial filter output lx1 is applied differentially 
to the gates of M1a,b and the other filter output lx2 to the gates 
of M2a,b and M3a,b, as shown in Figure 3. The differential 
implementation provides robustness against noise and DC 
bias variations at the price of the added complexity of 
common-mode feedback circuitry. 

 
Figure 3: Gilbert cell multiplier to generate 2nd order LEV terms 

C. Weighting Block Generation 
Modularity and scalability play an important role in the 

implementation of the LEV system, because they provide 
flexibility and quick re-design. Therefore, to implement the 
weighting block, a structure similar to the Gilbert cell is 
used. Each coefficient ck is multiplied by its corresponding 
LEV signal using the multiplier core of Figure 3.  

 
Figure 4: Weighting Block Implementation 

In Figure 4 the differential dc voltage ∆vck corresponds 
to ck. The current outputs of the multiplier core blocks are 
then added together to produce the final output voltage, as 
the weighted sum of the Laguerre polynomials and the 
higher order terms. The output NMOS devices are biased at 
the gate by vcmfb, generated by a common-mode feedback 
circuit (not shown). 

IV. PROGRAMMABILITY AND FLEXIBILITY 

A. Effects of Mismatch in Subthreshold 
It can be shown that the relative mismatch of the drain 
currents of two identically sized transistors with the same 
gate voltage (such as in a current mirror), is:   
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Where β denotes the current factor, gm is the 
transconductance, and VT is the threshold voltage of the 
transistor. Since gm/ID is maximized in the subthreshold 
region, the current mismatch is more significant in this region 
compared to strong-inversion [5].  

The MOS drain current expression for a transistor in weak 
inversion with the source used as the reference is described 
by:  
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where UT is the thermal voltage and n is the slope factor 
which is approximately 1.33 (for the 0.13µm technology 
used in this work) [6].  ID varies exponentially with VT, 
which is a random variable with a normal distribution. The 
standard deviation of this distribution becomes larger as the 
CMOS process shrinks. Therefore, ID becomes subject to 
significant statistical variations in sub-micron technologies. 
It is therefore not uncommon to have nominally identical 
transistors with currents that are apart by more than an order 
of magnitude due to the variability of VT.  

Conversely, it can be shown, using (5) that a transistor’s 
drain current changes by a factor of 10 for approximately 
every 80mV change in gate voltage. Therefore we adjust the 
gate voltage to compensate for the often significant current 
mismatch in subthreshold region using a digital calibration 
subsystem. It can be calculated that to keep the current 
mismatch below 5%, the gate voltage must be programmable 
with a resolution of better than 1.76mV.  

B. Digital Calibration for LEV Implementation 

Figure 5 shows the digital subsystem used to adjust the 
gate voltage of each analog current source independently. It 
also provides the right voltage level to set the time constant p 
and the weighting coefficients of the LEV model. By 
providing these adjustable output voltages random variations 
in the chip can be calibrated. 

A ladder of 127 resistors (R1) generates 128 voltage 
levels between v_high and v_low. A 7-bit analog tree mux 
selects the desired voltage. This voltage is then directly 
applied to the gate of the transistor under calibration, or the 
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vadj input of a transconductance cell to set the correct time 
constant p, or to the input of a weighting multiplier core to set 
ck. 

For every adjustable voltage a tree mux and its associated 
7-bit register will be needed. In our prototype this number is 
limited to around 120 independent voltages and therefore the 
dashed box in Figure 5 is replicated 128 times. A decoder 
activates one of the 128 mux/register cells via a 7-bit Gate 
Select word. The calibration process is a closed loop system 
that starts by setting a voltage at the nominal value and 
measuring the variable to be calibrated (e.g. the transistor 
current). The voltage is then changed in the right direction 
until the target variable is adjusted to the correct value. 

 
Figure 5: Digital Calibration System 

To accomplish a 1.76mV resolution in the voltage using 
a 7-bit resistive ladder, the difference between V_high and 
V_low should be 225mV. This range can change a given 
current by a factor of 500, which is more than sufficient for 
calibration of transistors, based on the foundry’s mismatch 
data. Therefore the calibration range can be reduced to 
obtain better step resolution, if needed.  

This scalable scheme allows a multitude of methods to 
be utilized for more extensive calibration. For example, the 
bulk voltage of the PMOS devices can be changed in the 
same manner to compensate the threshold voltage variations. 

V. RESULTS 

To evaluate the performance of the hardware LEV model, 
the LEV coefficients and time constants are determined 
using Matlab simulations. The system is trained using post-
synaptic potential recorded at the soma of a hippocampal 
neuron in response to a 2Hz Poisson random interval train 
(Fig.6a).  The output of the hardware LEV model simulated 
using Cadence Analog Design Environment is shown in Fig. 
6b. As a comparison, the output of the ideal LEV model 
simulated in Matlab is shown in Fig. 6c. The normalized 
mean square error between the ideal and the subthreshold 
hardware implementation is 8.15%. The power consumption 
of each component of the system is shown in Table 1. The 
total power consumption of the system is 32.3nW.  

 
Figure 6: a) Poisson random input stimulus, b) output of the 
hardware LEV model (coefficients ck and parameter p determined 
using Matlab training simulations, c) output of the ideal (Matlab) 
approximation 

The digital subsystem is only on during calibration and, 
therefore, does not contribute to the overall power 
consumption of the system. The total chip area is 1mm x 
1mm in 0.13µm Cypress technology, where the analog part 
occupies an area of 0.3mm x 0.3mm. 

 
Hardware Component Power Consumption [nW] 

OTA .062 
Low-Pass Filter .062 
All-Pass Filter .248 

Gilbert Multiplier .682 
Gilbert CMFB .620 

Weighting Block 9.461 
Weighting Block CMFB 8.768 

LEV System 32.3 

Table 1: Power consumption of subthreshold analog LEV circuitry 

VI. CONCLUSION 

We have implemented a 2nd order LEV model in 
subthreshold CMOS analog hardware. The hardware model 
is programmable and can be calibrated using a digital 
subsystem. This system serves as a foundation for large-scale 
LEV systems. 
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