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Abstract— In extracellular neural recording experiments,
spike detection is an important step for information decoding
of neuronal activities. An ASIC implementation of detection
algorithms can provide substantial data-rate reduction and
facilitate wireless operations. In this paper, we present a 16-
channel neural spike detection ASIC. The chip takes raw data
as inputs, and outputs three data streams simultaneously: field
potentials down sampled at 1.25 KHz, band-pass filtered neural
data, and spiking probability maps sampled at 40 KHz. The
functionality and the performance of the chip have been verified
in both in-vivo and benchtop experiments. Fabricated in a 0.13
µm CMOS process, the chip has a peak power dissipation of 85
µW per channel and achieves a data-rate reduction of 98.44%.

I. INTRODUCTION

Spike detection is to differentiate extracellular neural
spikes from background noise. Its motivation is twofold:
to extract neural spikes for data analysis and closed-loop
execution, and to compress neural data and facilitate wireless
operations. Many algorithms have been reported where there
are three evaluation criteria of corresponding hardware. First,
detectors should be suitable for online implementation and
not requiring significant computational resources or storage.
Second, detectors should be nonparametric and unsupervised
to avoid frequent parameter tuning. Third, detectors are pre-
ferred to consistently perform well with different recording
preparations and experiment protocols.

Several spike detection hardware circuits have been re-
ported [1], [2], [3], [4] to meet some of the requirements.
In [1], Rizk presented a FPGA implementation based on
an absolute-value thresholding algorithm. This detector is
efficient and easy to implement, yet its performance is not
satisfactory at moderate or low SNRs and very sensitive
to thresholds. An energy-based detector called nonlinear
energy operator (NEO) was implemented in a multichannel
neural spike-sorting DSP [4]. NEO is meant to boost the
differentiation between signals and noise, assuming signals
are transient and not correlated with noise. However, neural
noise tends to be nonstationary and unstable, resulting in
compromised detection performance of NEO. To the best
knowledge of the authors, no detection methods other than
absolute-value thresholding and energy-based detectors have
been implemented in integrated neural recording hardware.
Given the unsatisfactory performance of these two groups
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of detectors, there is a need to have efficient and reliable
detection algorithm for implementation [5].

In this paper, we report a detection algorithm followed by
its ASIC implementation. In comparison with other detectors
and unsolved challenges on efficiency, parameter tuning,
and reliability, our detector has the following features. First,
through online and iterative learning, the required on-chip
storage has been reduced, enabling online and area-efficient
hardware design. Second, all parameters are estimated from
raw data and adaptively updated, avoiding frequent parameter
tuning. Third, the detector is biophysically plausible and
featuring fast training within 2.5 sec. As a result, it works
reliably with different preparations, a wide range of SNRs,
and nonstationary data characteristics. The ASIC has three
output streams, which are field potentials, spikes data, and
spiking probability maps. From the chip inputs to outputs,
16-channel raw data are compressed from 10.24 Mbps to 160
Kbps, achieving a more than 90% data-rate reduction, which
is feasible for reliable wireless transmission .

The rest of the paper is organized as follows. Section II
describes our detection algorithm. Section III presents the
chip architecture, design trade-offs, and circuit implemen-
tation details. In Section IV, system prototype is presented
with experiment results. Section V concludes the paper.

II. EC-PC SPIKE DETECTION ALGORITHM

The algorithm is outlined below [6] and its flowchart is
given in Fig. 1.

EC-PC Spike Detection Algorithm
Input: Digitized neural data V (m∆T ), m is the sampling index
and ∆T is the sampling interval.
Output: Probability map ps(m∆T ) to indicate spike presence.
For example, ps(m∆T )=1 means the sample is 100% a spike.

• Band-pass filter V (m∆T ) into Vbp f (m∆T ).
• Transform Vbp f (m∆T ) into Hilbert space as HV (m∆T ),

and form analytic signal Vst(m∆T ) = Vbp f (m∆T ) +
iHV (m∆T ).

• Define Z(m∆T ) the power of Vst(m∆T ) and estimate its
probability density function f (Z) through histograms.

• Decompose f (Z) into two components, f̃n(Z) = e−λ1Z

(EC) and f̃d(Z) = Z−λ2 (PC).
• Calculate ps(m∆T ) = f̃d(Z)/( f̃d(Z)+ f̃n(Z)).

According to [6], recorded neural data are a combination
of two components which are noise (exponential component,
EC) and detectable spikes (polynomial component, PC) in
the Hilbert space. A spiking probability map can be esti-
mated from EC and PC and used for detecting spikes. This
detector is nonparametric and self-adaptive. It also has lower
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Fig. 1. Flowchart of the proposed detector. Plots 1, 2 and 3 illustrate the histogram, EC-PC decomposition and spiking probability maps.
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Fig. 2. Architecture of the neural spike detection ASIC.

computational complexity compared with template matching
or wavelet-based methods.

III. CIRCUIT IMPLEMENTATION

A. Architecture Design

Fig. 2 illustrates the system architecture where individual
blocks are correlated with the main steps in the algorithmic
flow. The ASIC receives raw neural data and outputs three
data streams: field potentials, spike data, and spiking proba-
bility maps. To facilitate an efficient implementation, inter-
leaved architecture has been adopted, which allows different
processing channels to share most common combinational
circuits, thus reducing hardware cost. For a quantitative
measure of hardware savings, combinational and sequential
logic for the main blocks obtained from synthesis results are
listed in Table I.

Clearly, combinational circuits consumed the most area.
By sharing combinational circuits through interleaving, a cost
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TABLE I
HARDWARE RESOURCES SUMMARY OF MAIN BLOCKS.

Combinational Sequential Total count
Low-Pass Filter 9.78K 1.47K 11.25K (5.04%)
Band-Pass Filter 71.07K 6.72K 77.80K (34.84%)
Hilbert Transform 18.09K 5.94K 24.03K (10.76%)
Regression Engine 45.26K 7.35K 52.61K (23.56%)
Probability Gen 56.64K 0.96K 57.60K (25.80%)
Sum 200.84K 22.44K 223.28K (100%)

reduction of 82.03% has been achieved.

B. Programmable Band-Pass Filter

A 16-order infinite-impulse response (IIR) filter with tun-
able corner frequencies is shown in Fig. 3, which consists
of eight digital biquad filters cascaded in series. The pro-
grammability is supported by a serial peripheral interface
(SPI). Cyclic redundancy check (CRC) is incorporated to
enhance the data transmission reliability. The coefficient
downloading through SPI and simultaneous CRC are coor-
dinated by a on-chip finite-state machine (FSM). Compared
with [7], where the parameter adjustment is realized by
altering the number of serially connected pseudo-resistors,
the proposed mechanism gives a much higher flexibility.
Throughout the available spectral bands, the out-of-band
rejection is over 64 dB and the in-band ripples are less than
0.08 dB.
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Fig. 5. R2SDF structure of 16-point Hilbert transform.

C. Hilbert Transform

The motivations to perform Hilbert transform are twofold.
(1) Extracellular spikes may have significant variations in
shape and require multiple detection windows, while only
one window is needed after Hilbert transform [8]. (2) Neural
data have more compact representations in Hilbert space,
which simplifies the EC-PC decomposition.

In our ASIC, Hilbert transform is based on fast-Fourier
transform (FFT) and inverse-FFT. According to the eval-
uation given in Fig. 4, lengths greater than 16 can only
achieve less than 3% improvement of accuracy at the cost of
linearly increased storage requirement. Therefore, 16-point
is selected in this design. An efficient structure with low
computational requirement and moderate processing delay
called Radix-2 single delay feedback (R2SDF) [9] is used to
implement the Hilbert transform, as shown in Fig. 5.

D. EC-PC Decomposition

To ensure adequate training accuracy, the word-length of
the bins in histograms for EC and PC estimation are 14-bit
and 10-bit, leading to 752 bytes in total for 16 channels.
To reduce hardware cost, one histogram is shared by 4
channels sequentially, achieving a 4X reduction in required
storage for histograms. Simulation results given in Fig. 6
shown that a 2.5 sec training period for switching histograms
among channels can roughly yield a reliable estimation of
neuron firing-rates. By setting the training period to be 2.5
sec, coefficients of each channel are updated every 10 sec
based on the 2.5 sec training. As shown in Fig. 7, the
EC and PC bins are time-multiplexed and processed by
the curve fitting units which simultaneously perform two
first-order linear regression tasks in the linear-log axis and
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Fig. 7. Architecture of multichannel EC-PC linear regression engine.

log-log axis, respectively. After each period, one regression
engine is switched to the next channel and builds another
histogram in place. The switching is scheduled by a control
unit coordinating all regression engines. At the end of each
training period, the exponential and polynomial curve fitting
units are activated and to estimate the coefficients within 0.75
ms. The estimated coefficients of one channel will remain
constant until the regression engine is switched back.

IV. PROTOTYPING AND MEASUREMENTS

A. Experiment Setup

As shown in Fig. 8, the chip is packaged in a small
printed circuit board (PCB) with a size of 1.9 cm × 1.5
cm, connected to a NeuroNexus microelectrode array. A
credit card size board (5.4 cm × 7.5 cm) including a FPGA,
SRAMs, level shifters, power managements and interfaces is
used as an evaluation board to provide a complete testing
benchtop that requires only one USB cable as power and
data link. This benchtop can transmit 15 Mbps data bi-
directionally.
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B. Testing Results

A demonstration of the ASIC to output spike signals and
probability maps for 16 channels is shown in Fig. 8. The
16 testing sequences cover a wide range of spiking activities
with different SNRs and firing-rates. The outputs are encoded
to enhance transmission reliability with an effective data-
rate of 10.24 Mbps. The chip microphoto and measured
specifications are given in Fig. 9. The core area of the ASIC
is 6.71 mm2. The ASIC consumes 85 µW per channel when
its functions are fully activated.

V. CONCLUSION

In this paper, a 16-channel spike detection ASIC chip
is presented. The chip is capable of outputting 16-channel
field potentials, spikes and probability maps simultaneously

and has achieved over 98% data-rate reduction to facilitate
wireless operation. By interleaving across 16 channels, more
than 80% hardware cost has been reduced, making the chip
suitable for implantable applications. Testing prototypes have
also been developed to facilitate the operations of the ASIC
in neural recording experiments.
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