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Abstract— We propose a novel coupling algorithm, based on
the operator-splitting scheme, which implements the viscoelastic
wall law at the coupling nodes of the vessels. Two different
viscoelastic models are used (V1 and V2), leading to five
different computational setups: elastic wall law, model V1
applied at interior and coupling grid points, model V1 applied
only at the interior grid points (V1-int), model V2 applied at
interior and coupling grid points, model V2 applied only at
the interior grid points (V2-int). These have been tested with
two arterial configurations: (i) single artery, and (ii) complete
arterial tree. Models V1-int and V2-int lead to incorrect
conclusions and to errors which can be of the same order as, and
are at least 1/5 of, the difference between the results with the
elastic and the viscoelastic laws. Both test cases demonstrate the
importance of modeling the viscous component of the pressure-
area relationship at all grid points, including the coupling points
between vessels or at the inlet/outlet of the model.

I. INTRODUCTION

Blood flow modeling of the cardiovascular system pro-
vides key insights about the conditions in blood vessels and
is useful for diagnosis and surgical planning [1]. When the
main focus lies on flow rate and pressure wave forms, one-
dimensional models are efficient and have been shown to
be able to accurately compute these quantities for patient-
specific models [2], [3], [4]. Most of the 1-d models use
elastic wall laws [5], [6], [7], while a few have also proposed
viscoelastic wall models [8]. When an elastic wall model is
used, a hyperbolic system of equations is obtained, which can
be readily solved using second-order explicit methods. For
viscoelastic wall models, the hyperbolic nature of the equa-
tions is lost and the approaches for the numerical solution
of the equations can be divided into two main categories:

1) Approaches that do not exploit the hyperbolic nature
of the equations (non-linear terms are solved iteratively
using the Newton method) [2], [9], [10];

2) Approaches that recover the original hyperbolic nature
by employing an operator-splitting scheme for the
momentum equation [6], [8], [11].

The second approach is computationally efficient since it
exploits the hyperbolic nature of the conservation equations,
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but it also introduces an approximation due to operator-
splitting. Conflicting results were reported for the effect
of the viscoelastic term: similar pressure waveform but
a smaller area variation [9], and a higher pressure pulse
but similar area variation [11]. The work in [8] and [11]
neglected the viscous term in the wall law at the coupling
nodes of the vessel segments (inlet, junction, outlet), which
has been identified as a potential cause for the contradiction.

In this paper, we propose a novel coupling algorithm,
based on the operator-splitting scheme, which implements
the complete viscoelastic wall law at the coupling nodes
of the vessels. We use two different formulations for the
viscoelastic law and report the results for a single artery and
a complete arterial model test case.

II. MATERIALS AND METHODS

A. Viscoelastic One-Dimensional Blood Flow Model

The quasi 1-d flow model consists of the mass and
momentum conservation equations [5]:
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where A = A(x, t) is the cross-sectional area, p the pressure,
and q the flow rate (spatial and temporal dependencies of the
quantities have been omitted for notational clarity). Coeffi-
cients α and KR account for the momentum-flux correction
and viscous losses respectively. Additionally, a state equation
relating the pressure in the vessel to the cross-sectional area
is also specified. The vessel wall can be modeled as a Voigt-
type material to include the viscoelastic effects [12]. The
following two state equations have been proposed [8], [13]:

Model V1: p =
4

3

Eh

r0

(
1−

√
A0

A

)
+

γS

A
√
A

∂A

∂t
+ p0 (3)

Model V2: p =
4

3

Eh

r0

(
1−

√
A0

A

)
+

γS

A0

√
A

∂A

∂t
+ p0, (4)

where E is the Young modulus, h is the wall thickness and
r0 is the initial radius corresponding to pressure p0. The
viscoelastic coefficient γS is set equal in both cases:

γS =
TS · tan ΦS

4π

hE
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, (5)

where TS is the wave characteristic time, ΦS is the vis-
coelastic angle, and σ is the Poisson ratio. The numerical
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solution method of the 1-d model is a domain decomposition
approach, where the continuity of flow and total pressure is
imposed at the coupling nodes. A time-varying flow rate
profile is imposed at the inlet and 3-element Windkessel
models are coupled at the outlets. For the numerical so-
lution, we applied the Taylor series expansion using finite
differences, which requires the equations to be written in
conservation form. The presence of the viscoelastic term
in (3)/(4) introduces an additional term in the momentum
conservation equation. Using the mass conservation, (2) can
be rewritten as:

∂q

∂t
+

∂

∂x

(
α
q2

A

)
+
A

ρ

∂Ψel

∂x
− A

ρ

∂

∂x

(
γ
∂q

∂x

)
= KR

q

A
(6)

Since (6) can no longer be cast into conservation form, the
operator splitting scheme introduced in [6] has been applied.
It assumes that the contribution of the viscoelastic term is
small compared to that of the elastic term. The flow rate is
considered to be composed of an elastic and a viscoelastic
component (q = qe +qv), and (6) is split into two equations:
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Consequently, the numerical solution at each step is com-
posed of two sequential sub-steps:

• The system composed of (1) and (7) is solved, yielding
the quantities A(x, t) and qe(x, t);

• (8) is solved with homogeneous Dirichlet boundary
conditions to obtain qv(x, t) and the total flow rate
q(x, t).

B. Coupling Algorithm

Previous works have neglected the viscoelastic component
of the pressure at the coupling nodes [8], [11]. To determine
the validity of this assumption, we have developed a novel
iterative implicit coupling algorithm, that is applied to inflow,
bifurcation and outflow points. The algorithm is a general-
ization of the one introduced in [14] and can be applied for
the coupling of m domains (one upstream domain, referred
by subscript index 1, and m− 1 downstream domains). The
models of these domains may be of any geometrical scale
(3D/1D/0D). For the upstream model, a pressure boundary
condition is used, while for the downstream models a flow
rate boundary condition is applied. Superscript n refers to
the solution at time step tn, and k refers to the iterations
performed at each time step to enforce the continuity of flow
and total pressure.

1) Initialization: k = 0, qn+1
i,0 = qni , p

n+1
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2) Loop on k
a) Compute the total flow rate to be distributed
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b) Solve the downstream models using the following
set of conditions:
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As a result pn+1
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computed.
c) Solve the upstream model using the boundary
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3) Convergence: if,
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∣∣∣ < ε, then
advance to step 1, else go to step 2.

Next, we introduce a set of additional remarks regarding the
application of this algorithm for the coupling between 1-
d domains (the algorithm is applied during step 1 of the
operator-splitting scheme). Given a certain pressure for the
pressure boundary condition at step 2.c, the area at the outlet
point of the upstream vessel, An+1

1,k+1, needs to be determined.
To compute the inverse of (3)/(4), the discretized equations
are used:
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Equation (9) is solved using the Newton method and the
unknown An+1

1,k+1 is initialized with the value from the
previous iteration An+1

1,k .
If the algorithm is used to couple two vessels, or to

couple a vessel and a Windkessel model, i.e. m = 2, step
2.b is simplified since the flow rate to be imposed for the
downstream vessel is determined directly. If m > 2, a system
of m − 2 nonlinear equations is obtained, that is solved
using the Newton method. The negative characteristic can
be cast into the following form for each downstream vessel:
qn+1
i,k+1 = ci1 · An+1

i,k+1 − ci2, i = 2, . . . ,m. where ci1 and ci2
are constants. Thus,

An+1
m,k+1 =

1
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)
.

Finally, the inlet flow rate of each downstream vessel is
computed. For a regular bifurcation, i.e. m = 3, a single non-
linear equation is obtained. Although the coupling algorithm
refers to one upstream vessel and m−1 downstream vessels,
there is no restriction regarding the direction of the flow.

III. RESULTS

Blood was modeled as an incompressible Newtonian
fluid with density 1.055 g/cm3 and a dynamic viscosity
0.045 dynes/cm2s. The parameters of γS were set as fol-
lows: TS = 0.30 s, ΦS = 10, σ = 0.5. Coupling nodes
were solved using the algorithm introduced in Section II.
Parameter χ was set to 0.5 and the tolerance threshold for
the coupling algorithm and the Newton iterations was set to
10−8. A gridspacing of 0.1 cm and a time-step of 5×10−5 s
was used. Simulations were run for 15 cycles to guarantee
convergence. Five computational setups were used: (a) elastic
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wall law, (b) model V1 applied at interior and coupling
grid points, (c) model V1 applied only at the interior grid
points (V1-int), (d) model V2 applied at interior and coupling
grid points, and (e) model V2 applied only at the interior
grid points (V2-int). These were tested with two arterial
configurations: (i) single artery, (ii) complete arterial tree. We
also compared the results obtained with the classic coupling
algorithm based on the method of characteristics [5] with
the results obtained with the coupling algorithm in section
2.b (using an elastic wall law). We computed the L2 norm of
the absolute differences between the two solutions. The norm
results were in the order of 10−6cm2 for the area, 10−5ml/s
for the flow rate, and 10−5mmHg for the pressure, showing
that both coupling algorithms lead to the same results.

A. Single Artery Case

This test case consisted of an arterial segment with a
length of 3.0cm and a radius of 1.25 cm. An analytical
time-varying flow rate profile, given by an asymmetric
Gaussian function with an average value of 80ml/s, was
imposed at the inlet. The Windkessel parameters of the outlet
boundary condition were: Rp = 100 dynes s/cm5, Rd =
1500 dynes s/cm5, C = 1.3 · 10−3 cm5/dynes. The results
are displayed in Figure 1 for the mid-vessel cross-section (at
1.5 cm) and are summarized in Table I. When the viscous
component in the pressure-area relationship is modeled at all
grid points, the pressure is almost unaffected, and a lower
cross-sectional area variation is obtained. Conversely, when
the viscous component is modeled only at the interior points,
the pressure pulse is higher and the cross-sectional area
variation is similar to the elastic case. The time-to-peak of the
pressure is unchanged for models V1 and V2 but decreases
for models V1-int and V2-int. The peak-value of the cross-
sectional area is reached at a later moment in time.

Fig. 1. Comparison of time-varying pressure and cross-sectional area for
the single artery test case, obtained when applying the elastic model, and
models V1, V2, V1-int and V2-int.

TABLE I
DIFFERENCES IN PRESSURES AND CROSS-SECTIONAL AREAS FOR THE

SINGLE ARTERY TEST CASE.

Measuremenet Elastic V1 V2 V1-int V2-int
Pmax − Pmin [mmHg] 46.39 46.35 46.36 47.18 47.51
Amax −Amin [cm2] 1.118 1.086 1.079 1.117 1.118

tpeak [s] 0.215 0.215 0.215 0.203 0.196

Fig. 2. (a) Human arterial tree model composed of 51 arteries, (b)
Time-varying cross-sectional area at the descending aorta, (c) Pressure-area
variation at the descending aorta, (c-f) Time-varying pressure and flow rate
at the aortic root, descending aorta, femoral artery and subclavian artery.

B. Full Body Arterial Tree Case

A complete arterial tree with 51 segments based on [15],
was used for this case. Figure 2a shows the vascular tree,
together with the 4 locations (marked with letters A-D), at
which the time-varying pressure and flow rate values are
displayed in Figure 2d-g. The viscoelastic effects dampen
the high-frequency oscillations in the pressure and flow
waveforms, a phenomenon which is more pronounced at
the distal locations. These observations are consistent with
results reported in literature [2]. Furthermore pressure and
area were out of phase, the peak cross-sectional area value
being generally reached at a later moment in time (Figure
2b). A smaller cross-sectional area variation was obtained
for models V1 and V2, whereas for models V1-int and
V2-int, the variation is similar to the one obtained with
the elastic law. For completeness, Figure 2c displays the
hysteresis obtained in the pressure-area relationship at the
same location. Results are similar for models V1 and V2.
To quantify the difference between the results obtained with
models V1 and V1-int, and with models V2 and V2-int, we
computed the average and maximum relative differences at
locations A-D (Figure 2a). We also computed the average and
maximum relative differences between the results obtained
with models V1 and V2, and with the elastic model. The
errors are displayed in Table II. Although the differences be-
tween models V1 and V1-int and V2 and V2-int respectively
are small, they are comparable to the differences between the
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TABLE II
RELATIVE AVERAGE AND MAXIMUM DIFFERENCES OBTAINED BETWEEN DIFFERENT IMPLEMENTATIONS OF THE VISCOELASTIC MODELS, AND

BETWEEN THE VISCOELASTIC AND ELASTIC MODELS, AT LOCATIONS A-D DISPLAYED IN FIG. 2A.

Artery Diff V1 – V1-int V1 – elastic V2 – V2-int V2– elastic
P[%] Q[%] P[%] Q[%] P[%] Q[%] P[%] Q[%]

Asc. Avg. 0.545 0.0 0.954 0.0 0.620 0.0 1.088 0.0
Aorta Max. 1.227 0.0 3.896 0.0 1.397 0.0 4.353 0.0
Desc Avg. 0.499 0.851 0.897 1.343 0.568 0.956 1.019 1.472
Aorta Max. 0.961 2.970 3.955 3.447 1.100 3.289 4.410 3.887

Femoral Avg. 0.310 0.984 1.528 3.866 0.342 1.079 1.697 4.278
Artery Max. 1.104 3.030 7.812 11.66 1.241 3.365 8.484 12.96
Subcl. Avg. 0.522 1.019 1.128 3.982 0.594 1.090 1.287 4.387
Artery Max. 1.231 3.417 5.774 17.74 1.390 3.652 6.365 19.12

viscoelastic and elastic model. Even for the distal locations,
where the influence of the viscous component is higher,
neglecting the viscous component in the wall law at the
coupling points introduces errors which represent 1/5 or more
of the difference between the viscoelastic and the elastic
models.

IV. CONCLUSIONS

We have introduced a novel coupling algorithm which can
be equally applied to implicitly couple inflow, bifurcation and
outflow points in 1-d and multiscale models. The primary
goal of this coupling algorithm was to consider the viscous
component in the wall law at the coupling points and not
only at the interior points of an arterial segment. For simple
geometries, the consideration of the viscoelastic law at the
coupling points leads to lower variations in pressure and
cross-sectional area. Moreover, pressure and flow rate are
comparable to the results obtained with the elastic law, and
only the cross-sectional area has a different time-dependent
behavior. Similar conclusions have been obtained recently
in [9] for relatively simple geometries (carotid artery and
abdominal aorta model).

For the full arterial tree model, viscoelasticity leads to
changes of up to 6% in the pressure values and up to 20%
in the flow rate values. The errors introduced by models V1-
int and V2-int can be of the same order as, and are at least
1/5 of, the difference between the results with the elastic and
the viscoelastic laws. Results have been consistent for both
viscoelastic models.

Both test cases demonstrate that it is important to consider
and to implement the viscous component of the pressure-area
relationship at all grid points, including the coupling points
between vessels or at the inlet/outlets of the model. Models
V1-int and V2-int have led to incorrect conclusions and to
significant numerical errors, which are independent of the
viscoelastic law ((3) or (4)). Hence, although the operator
splitting introduces an approximation, it leads to the correct
results and conclusions, but only if the viscoelastic law is
implemented properly at all grid points and not only at the
interior points.
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