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Abstract— Stroke is among the leading causes of death
and disability worldwide. Most strokes are ischemic, mostly
caused by the blockage of a cerebral artery by a thrombotic
embolus. Carotid atherosclerosis and the subsequent plaque
rupture can be a major source of these emboli. It is well
known that blood flow affects where atherosclerotic plaque
will arise. In particular, vascular wall shear stress (WSS) has
been linked to the initiation and progression of carotid plaque.
However, it is difficult to measure WSS in vivo and it is time-
consuming to compute WSS using computational fluid dynamics
packages. The goals of this paper are (i) to identify a set of
local geometric parameters that are correlated with WSS and
(ii) to develop a regression model to predict WSS from the
geometric parameters. We validated our regression model using
the root mean squared error (RMSE), adjusted R

2 and Akaike
information criterion (AIC). The experimental study involved
six carotid arteries with the internal and external carotid
arteries (ICA and ECA respectively) analyzed separately. The
adjusted R

2s for 9 of the 12 branches were higher than 0.8.
Since the proposed local geometric parameters can be obtained
efficiently, these parameters can potentially be used as carotid
disease phenotypes that will allow for a much more cost-
effective method to identify subjects with elevated stroke risk.

I. INTRODUCTION

Carotid atherosclerosis is a focal disease occurring pre-

dominantly at bifurcations [1], [2]. Numerous studies have

shown that hemodynamic forces - especially low and oscil-

latory wall shear stress (WSS) - are linked to the initiation

and progression of plaque development [3]. However, current

technology for measuring WSS in vivo hinges on many

assumptions regarding the hemodynamic properties of the

blood flow and is not reliable [4]. Numerical techniques in

obtaining time-resolved wall shear stress distribution have

been developed and are currently available as commercial

computational fluid dynamics (CFD) packages [5]–[8]. A

major limitation of CFD is that it is computationally intensive

and time-consuming. In our experience, it took 15 hours to

complete the computation of WSS for three pulse cycles

using a commercial CFD package on an Intel Xeon 2.0 GHz

CPU with 8.0 GB memory. This limitation precludes the

use of CFD in large-scale clinical trials, and therefore, our
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previous CFD studies involved only a very small population

(∼ 10) [9].

Recent studies have examined the correlation between the

geometry of the bifurcation and hemodynamic parameters,

such as WSS and oscillatory shear index (OSI) [10], [11].

The success of these studies suggests the use of geometric

parameters to predict flow parameters. However, existing ge-

ometric parameters, such as the bifurcation angle, tortuosity

and ratio between different branches of the carotid artery

[11], [12], are global in nature, while the distribution of

hemodynamic parameters are local and computed on a point-

by-point basis. Thus, a set of local parameters based on

carotid surface geometry needs to be developed that will

improve the accuracy of the prediction of flow parameters.

The goal of this paper is to lay the foundation for a model

predicting the magnitude of WSS from local geometric

parameters. Since geometric quantities can be computed

efficiently [13], if such a model is established and thoroughly

validated, geometric parameters would become surrogate risk

markers for cerebrovascular events that can be obtained in a

much more cost-effective way than WSS.

II. METHODS

A. Carotid MR Imaging and Geometric Model Construction

The MRI acquisition protocol was described in detail in

[9]. MR images of five contrast weights were registered

and displayed using an in-house image analysis software

(CASCADE [14]). The arterial lumen boundary for each

axial MR image was segmented on CASCADE. The mesh

generation and WSS calculation procedures were described

in [9] and are summarized here. For each artery, an unstruc-

tured tetrahedal mesh was reconstructed from a stack of 2D

segmented contours using a customized version of the MAT-

LAB code developed in [15]. This mesh was imported into a

CFD software package (COMSOL Multiphysics, Stockholm,

Sweden) in which Navier-Stroke equations were solved. The

computation time step was 10ms and three cardiac cycles

were simulated. The WSS computed was colour-coded and

superimposed on the carotid surface (Fig. 1(b)).

B. Carotid Surface Centerline

The carotid surface was reconstructed from a stack of

2D segmented contours using the method described in [16],

which generated a membership function with a value of 1

inside the contours and 0 outside the contours and interpo-

lated this function onto a dense grid. The carotid surface

was then extracted from this membership function using the

marching cube algorithm [17]. The centerline of the surface
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Fig. 1. (a) shows how the ECA, ICA and CCA were decomposed
by Antiga’s algorithm [18]. (b) shows the time-averaged WSS (in Pa)
superimposed on the carotid surface. (c) shows how our proposed algorithm
split the carotid artery into three branches. (d) The carotid surface with the
circumferential coordinate colour-coded and superimposed.

was generated using the algorithm described in [18], which

was implemented as an open-source software known as the

Vascular Modeling Toolkit (VMTK) (www.vmtk.org).

C. Branch Splitting

WSS distributions on the common, internal and external

carotid arteries (CCA, ICA and ECA respectively) are quite

different (Fig. 1(b)) and were analyzed separately in this

study. Each carotid surface was therefore required to be

decomposed into three branches.

Antiga et al. [18] described a branch decomposition

algorithm based on four reference points. Two points on

each centerline were defined: the first is located where the

centerline of one branch intersects another centerline’s tube

(where a tube is the envelope of the maximum inscribed

sphere along a centerline, defined mathematically in Eq. (2)

in [18]) and is denoted as CECA
1 and CICA

1 for the two

branches. The second is located one maximum inscribed

sphere upstream and denoted as CECA
2 and CICA

2 for the two

branches (Fig. 2 of [18]). Points on the carotid surface were

classified as belonging to the CCA, ICA and ECA according

to their distances from these reference points. The problem

of this branch splitting procedure is that the decomposed ICA

and ECA extends too much to the CCA (Fig. 1(a)). This is

an issue because WSS changes abruptly when blood flows

from the CCA to ICA or ECA (Fig. 1(b)) and the correlation

between geometric parameters and WSS should be studied

separately for each branch.

To address this issue, we defined the reference points

differently. Before defining the reference points, the location

of the bifurcation apex must be defined. This definition

depends on two items defined in [18] (a) the splitting line

(a)
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Fig. 2. Definition of a geometric parameter, Change of Position (∆P ). (a)
A carotid surface with three transverse contours of the ICA displayed. (b)
A schematic showing examples of positive and negative ∆P .

between the three branches and (b) the UpNormal component

of the reference frame (nd in Fig. 2 of [18]). The splitting

lines between branches decomposed according to [18] are

shown in Fig. 1(a). nd is the unit vector pointing downstream

with average direction of CECA
1 −CECA

2 and CICA
1 −CICA

2 .

The bifurcation point was defined to be the point that has the

maximum dot product with nd over all points on the splitting

line (Fig. 1(c)). Then four reference points were defined:

pECA and pICA are points on the centerlines of ECA and ICA

branches respectively that are closest to the bifurcation. pUP
ECA

is located one maximum inscribed sphere upstream from

pECA and pUP
ICA

was defined similarly (Fig. 1(c)). For the

centerline generated for the CCA-ECA branch, the centerline

segment distal to pECA was labeled ECA Line and the

segmental proximal to pUP
ECA

forms the first part of the CCA

Line. Similarly, for the centerline generated for the CCA-ICA

branch, the centerline segment distal to pICA was labeled ICA

Line and the segmental proximal to pUP
ICA

forms the second

part of the CCA Line. The distances between each point, p,

on the carotid surface and the ICA, ECA and CCA Lines were

computed. Point p belongs to a branch if it is closest to the

corresponding line among the three lines. Fig. 1(c) shows

the results of the proposed branch decomposition method.

D. Extraction of Local Geometric Parameters

Fig. 2(a) shows the ICA of a carotid artery with WSS

superimposed. We defined three transverse slices in the

figure. Suppose each point on a transverse slice has a

correspondence point on the slice immediately distal to it.

We denote the vector pointing from a point, p i−1, on a

transverse slice, Slice i−1, to its correspondence point p i on

the adjacent slice distal to it, Slice i, as Vi. Fig. 2(a) shows

that when Vi points away from the centerline of the artery,

the WSS value at pi tends to be low, whereas when Vi points

towards the centerline, WSS at pi tends to be high.

To quantify this observation, we resliced the ICA (and

ECA) with a 1mm interslice interval starting from the

bifurcation apex. Reslicing started from the plane containing

the bifurcation apex and with normal defined as the vector

starting from pICA (or pECA for ECA) to the most distal point

of the centerline. Ref. [18] has parameterized each branch

circumferentially as shown in Fig. 1(d). Thus, each point of
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the contour is equipped with a circumferential (or angular)

coordinate from −π to π. For each contour, we sampled 8

points at a regular interval at {θi}
8
i=1

of the circumferential

coordinate (black dots in Fig. 1(d)). The parameter Change

of Position, ∆P , at point x(i, j), the sample point on Slice

i and with a circumferential coordinate of θj , is defined by:

∆P (x(i, j)) = [x(i, j)− x(i− 1, j)] · [x(i, j)− Ci] (1)

where Ci is the intersection between the cutting plane and

the centerline.

Fig. 2(b) shows the schematic of the ∆P calculation at

two points. For the point on the left, Vi points towards the

centreline. Thus, ∆P for this point is negative. For the point

on the right, Vi points away from the centerline and ∆P
is positive. We hypothesize that points with high ∆P is

associated with low WSS.

We equip each sample point x(i, j) with 8 parameters,

which can be classified into the following four groups:
1) Change of Position: Since the ∆P in the neighbour-

hood of x(i, j) may also have an effect of WSS, other than

∆P (x(i, j)), ∆P (x(i−1, j)) and ∆P (x(i+1, j)) were also

treated as attributes of x(i, j) in the regression analysis.
2) Longitudinal and Circumferential Coordinates, L, C:

The longitudinal coordinate, L, of each sample point was

defined as the slice number from which the sample was taken

(i.e., L(x(i, j)) = i). Since we observed that the WSS at

a point have a correlation with its circumferential distance

from the bifurcation apex, we modified the circumferential

mapping described in [18] as follows: First, we found out

the circumferential coordinate of the bifurcation apex and

denote it as θb. The modified circumferential mapping, C,

is the original circumferential mapping offset by θ b (i.e.,

C (x(i, j)) = θj − θb), which reflects the circumferential

distance between x(i, j) and the bifurcation apex.
3) Surface Curvatures, κH , κG: Curvatures measure the

“roughness” of the carotid surface. The mean (κH ) and

Gaussian curvatures (κG) were computed for each sample

point using the technique introduced in [13].
4) Distance from Centerline, D: The size of the carotid

artery may have an effect on WSS. Thus, the distance from

the centerline, D(x(i, j)) = ‖x(i, j)−Ci‖, was also used as

a parameter in the regression analysis.

E. Data Analysis

The WSS at a carotid artery branch was subtracted by the

mean WSS of that branch, which we denote as DM(WSS).
Analysis was performed on DM(WSS) because the flow

rate ratio between the ICA and ECA may be different for

different carotid arteries. The difference in the flow rate

ratio affects the mean WSS of ICA and ECA. Two linear

least squares regression models were employed to quantify

the relationship between DM(WSS) and the 8 geometric

parameters defined in Sec. II-D. In Model I, the 8 geometric

parameters were used as explanatory variables. In Model

II, the interaction and quadratic terms of the 8 geometric

parameters were added, giving 44 explanatory variables in

total. The regression models are evaluated by three param-

eters: root mean square error (RMSE), the adjusted R2 and

TABLE I

ADJUSTED R2 AND RMSE FOR ICA OF EACH SUBJECT

Subject 1 2 3 4 5 6

Model I

Adjusted R2 0.60 0.31 0.64 0.46 0.78 0.62

RMSE 1.90 2.19 1.67 0.91 1.97 3.5

Model II

Adjusted R2 0.81 0.56 0.96 0.79 0.92 0.92

RMSE 1.30 1.75 0.53 0.56 1.20 1.61

TABLE II

ADJUSTED R2 AND RMSE FOR ECA OF EACH SUBJECT

Subject 1 2 3 4 5 6

Model I

Adjusted R2 0.80 0.57 0.51 0.44 0.82 0.85

RMSE 1.29 1.87 2.13 1.79 0.66 1.34

Model II

Adjusted R2 0.91 0.85 0.80 0.73 0.91 0.93

RMSE 0.84 1.10 1.33 1.24 0.46 0.91

Akaike information criterion (AIC). Since comparisons were

made between models with different numbers of explanatory

variables and R2 increases monotonically with the number

of explanatory variables, adjusted R2 was used to adjust

for the number of explanatory variables. AIC measures

the information loss when a prediction model is used to

describe real data while keeping the number of explanatory

variables in consideration. The preferred model is the one

with minimum AIC value.

III. RESULTS

A. Regression For Each Individual Branch

Since each of the 6 carotid arteries has an ICA and an

ECA, this study involved a total 12 carotid branches. In

this section, we performed regression for the 12 branches

separately. Tables I and II list the adjusted R2 and RMSE ob-

tained using Models I and II. Model II performs much better

than Model I, giving evidence to support that DM(WSS)
depends on some of the second-order terms that were in-

volved only in Model II. The adjusted R2 for Model II ranges

from 0.56 to 0.96, with 9 of the 12 branches associated with

an adjusted R2 greater than or equal to 0.8.

B. Regression For ICA and ECA With Subject Data Pooled

In this section, the data acquired for the 6 branches of

ICA were pooled together in one analysis and data obtained

for the 6 branches of ECA were pooled together for another

analysis. For the regression performed for ICA using Model

I, the adjusted R2 was 0.29 with an AIC of 1262 and a

RMSE of 2.84 Pa. When Model II was used, the adjusted

R2 improved to 0.54, the AIC reduced to 1039 and RMSE

reduced to 2.21 Pa. For the regression performed for ECA

using Model I, the adjusted R2 was 0.43 with an AIC of

894 and a RMSE of 2.03 Pa. When Model II was used,

the adjusted R2 improved to 0.49, the AIC reduced to 859

and RMSE reduced to 1.92 Pa. Because of the inter-subject

variability, the adjusted R2 is lower and the RMSE higher
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ICA: Model I
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ECA: Model I
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ECA: Model II
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Fig. 3. Bland-Altman plots comparing DM(WSS) and ̂DM (WSS)
estimated for (a), (b) ICA and (c), (d) ECA. (a) and (c) show the Bland-
Altman plots generated for estimations produced by Model I. (b) and (d)
show the plots generated for estimations produced by Model II.

in the regression for the pooled data than the regressions

performed for individual branches in Sec. III-A. However,

when comparing the highest RMSE Model II produced (i.e.,

2.21 Pa for ICA) with the precision of 0.553 Pa derived in

[19] for a full CFD simulation and considering the fact that

only 8 geometric parameters were involved in the regression

model, Model II should be considered to perform well.

Fig. 3 shows the Bland-Altman plots [20] compar-

ing DM(WSS) and ̂DM (WSS ) for ICA and ECA.

Figs. 3(a) and 3(c) show that Model I tends to overestimate

DM(WSS) when WSS is lower than the average WSS

of a branch (i.e., DM(WSS) < 0) and underestimate

DM(WSS) when WSS is higher than the average WSS

(i.e., DM(WSS) > 0). Fig. 3(b) shows that this error was

largely corrected for ICA by introducing Model II. However,

a comparison between Figs. 3(c) and 3(d) shows that the

improvement of Model II over Model I for ECA was not

as apparent as for ICA. Further analysis on standardized

β of first and second-order explanatory variables should be

performed to acquire a better understanding on why Model

II did not produce a significant improvement for ECA.

IV. CONCLUSION

Computing WSS using CFD is computationally intensive

and time-consuming. In this paper, we defined local geomet-

ric parameters characterizing the carotid surface that can be

efficiently computed and built regression models to correlate

these parameters with WSS. The RMSE of our simplified

model (2.21 Pa) approaches that reported for full CFD (0.553

Pa), suggesting that this rapid technique could be sufficient

to highlight areas at risk due to abnormal WSS.

Notably, this study only accounted for the deviation from

the mean WSS of each branch without looking into how the

mean WSS would be predicted. The mean WSS is related to

the average blood flow rate, which is easily obtained using

Doppler ultrasound. Our future work will include correlating

the average blood flow rate and mean WSS.
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