
 

 

Abstract—Genome-wide epigenetic modification dynamics, 

including DNA methylation and chromatin modification, are 

involved in biological processes such as development, aging, and 

disease. Quantitative identification of differential epigenetic 

modification regions (DEMRs) from various temporal and spa-

tial epigenomes is a crucial step towards investigating the rela-

tionship between epigenotype and phenotype. Here, we describe 

EpiDiff (http://bioinfo.hrbmu.edu.cn/epidiff/), an integrated 

software platform that supports quantification of epigenetic 

difference and identification of DEMRs by Shannon entropy. 

Two main modules, quantitative differential chromatin modifi-

cation region (QDCMR) and quantitative differentially methyl-

ated region (QDMR) are provided for bioinformatic analysis of 

chromatin modifications and DNA methylation data, respec-

tively. The third module, quantitative differential expressed gene 

(QDEG), can be used to identify differentially expressed genes. 

The platform-free and species-free nature of EpiDiff makes it 

potentially applicable to a wide variety of epigenomes at an 

unprecedented scale and resolution. The graphical user interface 

provides biologists with a practicable and reliable way to ana-

lyze and visualize epigenetic difference. 

I. INTRODUCTION 

Epigenetic modifications play critical roles in the regula-
tion of gene expression and chromatin remodeling. Promoter 
hypermethylation can suppress gene transcription directly by 
inhibiting the binding of transcription factors to their target 
sites (1). Chromatin modifications, including histone variants 
and their post-translational modifications, also play an im-
portant role in regulating gene expression (2). And aberrant 
epigenetic changes in these regions are involved in disease 
processes (3). Differential epigenetic modification regions 
(DEMRs), as genomic regions with different epigenetic sta-
tuses among multiple samples (tissues, cells, individuals or 
others)(4,5.6), are regarded as possible functional regions 
involved in gene regulation. Dynamic epigenetic modifica-
tions in DEMRs are fundamental to the regulation of many 
cellular processes, including cell development, differentiation, 
X-chromosome inactivation and genomic imprinting (7,8).  
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High-throughput experimental techniques using microar-
rays and next-generation sequencing are providing epige-
nomic data on an unprecedented scale. Several techniques, 
such as RRBS (9) and MethylC-Seq(10), have been developed 
for profiling DNA methylation patterns across various cells or 
tissues. In most of these techniques, the original or pretreated 
DNA methylation status is represented by continuous values, 
with a measurement scale from 0 to 1 (11). Recently, chro-
matin immunoprecipitation (ChIP) followed by microarray 
hybridization (ChIP-Chip) or high-throughput sequencing 
(ChIP-Seq) has been widely used for genome-wide profiling 
of chromatin modifications and DNA-binding proteins (12). 
The unprecedented scale and precision of epigenomic data 
have enabled the quantitative analysis of differential epige-
netic status in gene regulation in various biological processes. 
Thus, effective computational tools for mining epigenetic 
differences are crucial for uncovering biological mechanisms 
of development, aging, and disease. 

Over recent years, considerable efforts have been made in 
the identification of DEMRs from high throughput epigenome 
data. Both statistics-based and counting-based methods have 
been used for identification of DMRs cross multiple 
cells/tissues. In our previous work, we developed an entro-
py-based quantitative approach, QDMR, for quantification of 
methylation difference and identification of DMRs across 
multiple samples from various methylomes (13). There are 
also some methods for analysis of differential chromatin 
modification. Based on hidden Markov model (HMM), Xu et 
al. proposed an approach, ChIPDiff, for the genome-wide 
identification of differential histone modification sites from 
ChIP-Seq data (14). RSEG, developed by Song et al., identi-
fies dispersed epigenomic domains from ChIP-Seq data, and 
can be used to identify DCMRs with a three-state HMM (15). 
However, both of these methods depend on certain distribu-
tions which ChIP-Seq data may not always follow because of 
different ChIP-Seq data preprocessing methods. In addition, 
both of these methods are only applicable to the identification 
of DCMRs between two samples. 

In this context, we describe EpiDiff, based Shannon en-
tropy (16), which is a quantitative measure of difference and 
uncertainty in a data set and has been widely applied in 
quantitative biology. The analysis method used in our previ-
ous tool QDMR for DNA methylation is extended to analysis 
of chromatin modification, trans-acting factor binding sites 
and gene expression data by appropriate adjustments. EpiDiff 
is a user-friendly integrated software tool that supports quan-
tification of epigenetic difference and identification of 
DEMRs, including DMRs and DCMRs. In addition, this tool 
also can be used to identify DTAFSs and differentially 
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expressed genes (DEGs). EpiDiff provides effective tools for 
the high-throughput identification of functional regions in-
volved in epigenetic regulation.  

I. PROGRAM OVERVIEW 

EpiDiff facilitates genome-wide quantitative comparison 
and visualization of epigenetic modifications among multiple 
samples. The tool takes epigenomic data as the input, and 
produces tabular and graphical output of the quantified epi-
genetic difference, differential regions, sample specificity, 
and genome information at the UCSC Genome Browser. 

EpiDiff is a Java-based program that can be run on com-
puters with a recent version of the Java Virtual Machine in-
stalled. This tool can be run as a self-installing distribution 
directly via Java Web Start, and as a local standalone instal-
lation package for offline computers. The module-based 
friendly user interface of EpiDiff supports the comprehensive 
analysis of a variety of high-throughput epigenetic data in 
multiple genome regions across multiple samples. Three 
modules (QDCMR, QDMR, and QDEG) are provided for 
bioinformatic analysis of chromatin modifications and 
trans-acting factor binding sites data, DNA methylation data, 
and gene expression data, respectively (Figure 1A). All 
modules can be accessed from within each module. For each 
module, a typical analysis consists of five phases: (i) data 
import; (ii) difference quantification; (iii) differential region 
identification; (iv) specificity measurement; and (v) data 
visualization and export (Figure 1B). 

II. DATA IMPORT 

Each of the three modules starts from importing data, ei-
ther from the laboratory or processed by bioinformatics 
methods via the corresponding import interface (Figure 2A). 
For every import interface, two example data are provided as 
references. All example data can be downloaded from EpiDiff 
website. It is suggested that users refer to and execute the 
example data before import their own data. All the import 
interfaces of the three modules support import of processed 
data in txt/xls files, the format of which is shown in the cor-
responding example data. Information about the regions of 
interest should be noted before the sample data for the region 
is processed. Users should also ensure that there are no 
missing values in the import data. Users also can define the 
column names, species, region information columns, sample 
information columns, data range (only for QDMR module) by 
the import interfaces. Moreover, the first 20 rows of data will 
be shown in the data file preview window embedded in these 
interfaces, which enables users to preview and re-define the 
imported data. 

A special interface is provided in the QDCMR module for 
importing the raw chromatin modification data by ChIP-Seq 
(Figure 2B). In this interface, two types of data should be 
imported. One is the region file which contains the regions of 
interest. The other data are the raw data files, including 
chromatin modification reads that have been aligned to the 
genome. These data files can be saved in .bed or txt.gz format, 
both of which are widely used in ChIP-Seq data. In addition, 
these files should be imported into the software as a file folder 

or a compressed file (e.g. a zip file), as shown in the example 
data.  

III. DATA PROCESSING 

EpiDiff implements a data processing pipeline that is run 
for each region across multiple samples. The pipeline quanti-
fies the difference among the data in all samples by entropy. 
Based on these entropy values, it infers which regions are 
differential among these samples by a threshold determined 
from the probability model in EpiDiff. The specificity in each 
sample is then measured for each differential region. More 
details about the key steps of the data processing pipeline are 
outlined in below. All of these analyses can be conveniently 
implemented by mouse clicks in the graphical user interface, 
which provides biologists with a practicable and reliable way 
to analyze and visualize epigenetic differences. 

IV. QUANTIFICATION OF EPIGENETIC DIFFERENCE BY 

ENTROPY 

In this study, we selected Shannon entropy, a quantitative 

measure of difference and uncertainty in a data set, which has 

been widely applied in quantitative biology (16). Furthermore, 

we performed several optimizations of the algorithm to ac-

count for recurrent issues with epigenetic modification data. 

To equally quantify the modification difference of the regions 

with hyper- or hypo-modification in minor samples, a one-step 

Tukey's biweight is used to process the raw modification 

levels for each region, as Kadota et al. did in the development 

of the ROKU method (17). Considering the range of variation 

of the modification data, the entropy for each region is ad-

justed by a modification weight that was defined based on the 

ratio between the data range among samples in the region and 

the total data range. The higher the entropy, the larger the 

epigenetic modification difference across multiple samples. 

The entropy determined by this adapted method can accu-

rately represent the degree of epigenetic modification differ-

ence among multiple samples. In addition to identifying dif-

ferential regions, the entropy inferred by EpiDiff also can be 

used to quantitatively analyze the correlation between dif-

ferent types of epigenetic modification difference or the rela-

tionship between epigenetic modification difference and gene 

expression difference. 

V. IDENTIFICATION OF DIFFERENTIAL REGIONS BY 

THRESHOLD 

Based on the quantitative modification difference, dif-
ferential regions can be identified by an appropriately defined 
threshold. In this study, the threshold is determined by a 
modification probability model, in which the random bio-
logical variability among samples was modeled based on the 
assumption that each region exhibits an average modification 
level across all samples. The log base 2 of the fold change 
between replicate-dependent difference from the average 
level across replicates and the theoretical maximum range of 
epigenetic modification was assumed to display a normal 
distribution with a mean equal to zero and a standard deviation. 
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After setting the proper standard deviation, the mean modi-
fication intensity is sampled from the distribution of observed 
mean epigenetic modification intensities obtained randomly 
from the data submitted by user, and 5000 regions with uni-
form epigenetic modification across samples were modeled. 
The entropy values of these 5000 regions follows a normal 
distribution in which a threshold is determined at p = 0.05 
(one-sided). This process is repeated 10 times, and the mean 
value of 10 thresholds is defined as the threshold for identi-
fication of differential regions across multiple samples. The 
regions with entropy lower than the threshold are identified as 
differential regions, which are widely used in the comparative 
genomics and epigenomics. 

VI. MEASUREMENT OF SAMPLE SPECIFICITY FOR 

DIFFERENTIAL REGIONS 

The sample-specific modification levels are considered as 
the main individual factors that determine the modification 
differences across samples. Here, the contribution of a se-
lected sample to the whole modification difference is reflected 
by the difference between the entropy across all samples and 
the entropy across the samples that do not include the selected 
sample. Thus, a positive entropy difference represents a 
sample-specific modification, while a negative one represents 
no specificity and is replaced by 0. To further identify specific 
hyper-modification or hypo-modification in a region, the 
categorical sample-specificity (CS) is defined as the product 
of entropy difference and sign of the difference between the 
modification level in the selected sample and the median 
modification level in all samples.  

VII. DATA VISUALIZATION AND EXPORT 

Once each step of data processing is complete, the results 
are shown in the data table on the right panel of the software 
(Figure 3A). The data in the first row are visualized in the 
visualization window acquiescently. Users can click a row to 
view the data across samples and set the image properties by 
right clicking. In addition, users can double-click a row to 
view the region information in the UCSC Genome Browser 
(Figure 3B) if the information about species, chromosome, 
region start, and region end have been defined in the import 
interface. All results can be exported in several formats, in-
cluding data tables and graphical plots. The visualization 
module allows the user to inspect the raw data pattern, dis-
tribution of differential regions on chromosomes, and genome 
information in UCSC Genome Browser. Moreover, the 
graphical output can be published in research papers to ex-
plain the analysis results clearly. 

 

Figures and Tables 

 

Figure 1. Overview of EpiDiff. (A) Three modules (QDCMR, QDMR, 

and QDEG) of EpiDiff for chromatin modification, DNA methylation, and 

gene expression analysis. (B) The workflow of QDCMR module.  
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Figure 2. Data import interfaces of EpiDiff. (A) The import interface of 

processed data. (B) The import interface of raw chromatin modification data  

by ChIP-Seq in QDCMR module.  

 

Figure 3. Data visualization and export. (A) The visual interface of 

EpiDiff. (B) EpiDiff provides a convenient entrance to the genome annota-

tion in the UCSC Genome Browser of the studied region. 

VIII. CONCLUSION 

EpiDiff is a user-friendly integrated software platform, 

which provides comprehensive support for quantification of 

epigenetic difference, identification of differential regions, 

and measurement of sample specificity across multiple sam-

ples. The bioinformatic challenges in genome-wide quantita-

tive analysis of epigenetic difference are addressed by a spe-

cifically optimized Shannon entropy algorithm. The plat-

form-free and species-free nature of EpiDiff makes it poten-

tially applicable to unprecedented scale epigenomes profiled 

by high-throughput experimental techniques using microar-

rays and next-generation sequencing. In summary, EpiDiff 

provides effective tools for the quantitative identification of 

the differential regions and the potential biomarkers involved 

in epigenetic regulation. 
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