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Abstract²RNA-Seq, a deep sequencing technique, promises 

to be a potential successor to microarraysfor studying the 

transcriptome. One of many aspects of transcriptomics that are 

of interest to researchers is gene expression estimation. With 

rapid development in RNA-Seq, there are numerous tools 

available to estimate gene expression, each producing different 

results.However, we do not know which of these tools produces 

the most accurate gene expression estimates. In this study we 

have addressed this issue using Cufflinks, IsoEM, HTSeq, and 

RSEM to quantify RNA-Seq expression profiles. Comparing 

results of these quantification tools, we observe that RNA-Seq 

relative expression estimates correlate with RT-qPCR 

measurements in the range of 0.85 to 0.89, with HTSeq 

exhibiting the highest correlation. But, in terms of 

root-mean-square deviation of RNA-Seq relative expression 

estimates from RT-qPCR measurements, we find HTSeq to 

produce the greatest deviation. Therefore, we conclude that, 

though Cufflinks, RSEM, and IsoEM might not correlate as well 

as HTSeq with RT-qPCR measurements, they may produce 

expression values with higher accuracy. 

I. INTRODUCTION 

Transcriptomic research has been prevalent in the past two 
decades. Data derived from RNA-Seq, a specialized protocol 
using deep sequencing technology, has been useful in 
analyzing the transcriptomein recent years. Earlier 
technologies used to study the transcriptome include 
probe-based sequencing methods and hybridization-based 
microarray methods. RNA-Seq offers distinct advantages over 
these methods. For example, prior knowledge of existing 
genomic sequences is not needed to detect transcripts. 
RNA-Seq also distinctly reveals sequence variations due to its 
low background noise[1, 2] and minimal cross-hybridization 
errors. The throughput with which the entire transcriptome 
canbe studied with RNA-Seq cannot be matched by any other 
technology at present. 
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One of many applications of RNA-Seq is the study of gene 
expression profiles. In an RNA-Seq experiment, expression 
profiles are indirectly inferred from sequence coverage, or the 
number of sequence reads that align to a particular region of 
the transcriptome. Numerous tools have been developed to 
quantify the expression profiles. However, it is not clear which 
bioinformatics tool is the most accurate for RNA-Seq 
expression quantification. 

RNA-Seq quantification is challenging due to data 
properties such as effectivegene length and read length [3]. 
Moreover, effective normalization is necessary to compare 
inter-sample expression profiles [1,4,5]. Usually, 
quantification tools can effectively estimate gene expression. 
However, isoform expression estimation (for alternatively 
spliced genes) is more difficult as reads from isoforms of a 
gene can map to common exonic regions, increasing the 
complexity to identify the origin of the read with respect to an 
isoform [6]. Thus, the source of these ambiguously mapped 
reads is difficult to infer. A simple way to deal with 
ambiguously mapped reads is to simply discard them and keep 
only the uniquely mapped reads. More complex quantification 
tools attempt to resolve ambiguously mapped reads by using 
maximum likelihood estimation [7-9]. However, maximum 
likelihood estimatescan be inaccurate for low-expressing 
genes. In such case, Bayesian approaches may be more 
reliable [6].  

To provide a guideline for selecting RNA-Seq 
quantification tools, we compare variations in expression 
estimates when different tools are applied in a typical 
RNA-Seq pipeline and investigate the cause of these 
variations.  

II.  METHODOLOGY 

We examine RNA-Seq quantification tools within a 

typical workflow where reads generated by the sequencing 

machine are first mapped to areferenceassembly. A single 

alignment tool is applied since our objective is to 

assessvariations in gene expression estimates among different 

quantification tools. Alignment outputs undergo various 

preprocessing stages to conform tothe requirements of each 

quantification tool. The quantification tools then estimate 

gene expression and/or is form expression(Figure 1). 

A. Datasets 

Single-readIllumina data was downloaded from the 
publicly available NCBI SRA repository (accession numbers: 
SRX003926 and SRX003927). SRX003926contains mixed 
human brain sample (sample A) with four technical replicates 
andSRX003927contains mixed human cell lines (sample B) 
with three technical replicates. These datasets were used in the 
MAQC (MicroArray Quality Control) project[10] and were 
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chosen because of the availability of corresponding TaqMan 
RT-qPCR measurements with four replicates for sample A 
and four replicates for sample B(GSE5350 in NCBI's Gene 
Expression Omnibus repository). The reads in this dataset 
were generated by Illumina's first generationhigh-throughput 
sequencing platform, the Illumina Genome Analyzer. The 
reads are 36bp in length with a library fragment length of 
approximately 200. 

The reference assembly used for this study was 

downloaded from Ensembl(GRCh37 release 67) along with 

the GTF (gene transfer format) file for the corresponding 

reference assembly. The GTF file was processed to contain 

information only on the 24 main chromosomes 

(chromosomes 1-22, X, and Y) and the mitochondrial 

DNA.The first column entries in the GTF file must match the 

chromosome names in the genome fasta file as they are 

matched in some of the quantification tools like Cufflinks. 

B.  Sequence Alignment  

We used TopHat (v.2.0.6),a spliced alignment tool, to 
align the RNA-Seq reads to the Ensemble reference genome 
assembly [11].We ran TopHat using the ultrafast short read 
mapping program Bowtie[12].On an average 68% of the reads 
aligned to the reference. 

C. Expression Quantification  

Cufflinks estimates expression profiles using a statistical 
model in which the probability of observing each fragment is a 
linear function of the expression level of the transcripts from 
which it could have originated. In the case of paired-end reads, 
Cufflinks, like most quantification tools we are studying, 

makes use of fragment length distribution for more accurate 
assignment of a fragment to the transcript[9]. 

Preprocessing the data for Cufflinks is not necessary 
because TopHat produces alignment files as required by 
Cufflinks (v.2.0.2). Cufflinks requires a GTF file and a BAM 
file as inputs for quantification and outputs the gene-level and 
isoform-level expression estimates. The FPKM (fragments per 
kilobase of exon per million fragments mapped) normalization 
method is applied. 

HTSeq uses a naive count-based approach for 

expressionestimation. The htseq-count script allows the user 

to choose how reads assigned to the corresponding gene from 

a list of three modes. These modes correspond to the overlap 

of features in the alignment:"union", "intersection-strict", and 

"intersection-nonempty".  

HTSeq(v.0.5.3p9) uses a SAM file for quantification along 
with the GTF file (in case the alignment is present in BAM 
format, use samtools (v.0.1.18) to convert it to SAM format). 
The parameters for HTSeq were modified to conform to our 
dataset. The mode used in this study is the 
"intersection-nonempty" mode and the default strand-specific 
assay flag was turned off. HTSeq outputs counts of only reads 
aligned to genes but not the counts of reads involved in a 
particular gene's isoforms, i.e.,the gene is considered to be a 
union of all exons. 

RSEM (RNA-Seq by Expectation Maximization. v.1.2.1) 

can be used to estimate expression levels of genes and their 

isoforms using two scripts: rsem-prepare-reference and 

rsem-calculate-expression[7]. The first step involves running 

the rsem-prepare-reference script, which essentially parses 

the genome fasta file into transcripts as specified in the GTF 

file. The output of this script is a reference file which is used 

to run the rsem-calculate-expression script for estimating 

expression levels. The rsem-calculate-expression script is 

responsible for aligning the reads to the transcripts and also 

for estimating the expression levels. The script uses 

Bowtie[12] to perform the alignment (Bowtie parameters 

were matched to that of our reference alignments).Once the 

read and the reference file, prepared from running 

rsem-prepare-reference, are supplied to the script,we obtain 

the expression estimates of genes and their isoforms in terms 

of count, TPM, and FPKM. 

IsoEM, like RSEM, is based on the expectation 

maximization algorithm. This two-step algorithm uses the 

weights calculated considering the insert size distribution, 

base quality scores, and strand informationto calculate the 

expected number of reads that correspond to a particular 

genomic region. This quantifier was designed to estimate 

expressions from reads aligned to the transcriptome[8]. 

IsoEM (v.1.1.1) has two mandatory arguments: the GTF 

annotation file and library fragment length distribution. 

IsoEM requires the SAM alignment file to be sorted 

according to the read name (i.e. first column of the SAM file). 

The output of gene and isoform expression estimates is 

normalized using FPKM. 

 
 
Figure 1.Expression quantification workflow. 
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C. Computational Cost 

IsoEM is the fastest quantification tool in the study (Table 

1). Using a Java platform, it manages to make the most of the 

available resources by occupying all available CPUs.For 

Cufflinks and RSEM, it is also possible to speed up the 

quantification process with the multi-thread setting. HTSeq 

does not support multi-thread computing.  

TABLE 1  COMPUTATION TIME FOR EXPRESSION ESTIMATION 
 Cufflinks HTSeq RSEM IsoEM 

Run Time 

(1 core) 
173m 15s 4m 2s 49m 13s - 

Run Time 

(15 cores) 
15m 21s - 12m 53s 0m 34s 

IV. CONCLUSION 

In this study, we assessed four commonly used RNA-Seq 

quantification tools. By comparing relative expression 

estimates, we observe that all tools are highly correlated with 

Taqman RT-qPCR values, which are considered to be the 

current "goldstandard" assay. Among these tools, HTSeq has 

the highest correlation with R
2
=0.89. But we also find that 

HTSeq exhibits the highest deviation from RT-qPCR when 

we perform RMSD analysis in terms of relative expression 

levels. 

HTSeq is a fast and easy to handle tool and its results 

correlate well as it has a better linear fit with RT-qPCR 

expression. However, we observe that there is a lateral shift in 

the relative expression estimates of HTSeq asinferred from 

Figure 3. Though Cufflinks, RSEM, and IsoEM might not 

correlate as well as HTSeq with RT-qPCR expression values, 

they may provide the user with more accurate expression 

values.Because of its computational efficiency, HTSeq can be 

used as a tool for preliminary data analysis or for quick 

assessment of relative expression estimates. We also observe 

that Cufflinks consistently detected more genes and isoforms 

than any other tool used in the study. 

V. FUTURE WORK 

RSEM, IsoEM, and Cufflinks include bias correction 

options. For future experiments, it would be interesting to 

investigate whether enabling bias correction would affect the 

performance of these tools in terms of correlation and RMSD 

when using RT-qPCR as the reference. Future benchmark 

studies that include more quantification tools and more robust 

performance metrics may provide further guidance for 

selecting RNA-Seq data analysis pipelines. 
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Figure 5. Number of isoforms detected in each sample by different 

quantification tools. 

Figure 4. Number of genes detected in each sample by different 

quantification tools. 
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