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Abstract²Predicting the localization of a protein has become 

a useful practice for inferring its function. Most of the reported 

methods to predict subcellular localizations in Gram-negative 

bacterial proteins have shown a low false positive rate. 

However, some subcellular compartmens like ³periplasm´ and 

³extracellular medium´ are difficult to predict and remain high 

false negative rates. In this paper, a method based on 

representation from statistical contact potentials and wavelet 

transform is presented. The wavelet-based method achieves an 

overall high performance holding low false and negative rates 

particularly on periplasm and extracellular medium. Results 

suggest the contact potentials as an useful alternative to 

characterize protein sequences. 

 

I. INTRODUCTION 

Protein subcellular localizations can indicate how and what 

kind of cellular environments the proteins interact, helping 

to elucidate its function and role in biological process [1]. 

Experimental techniques such as immunolocalization, 

fluorescent tagged, and isotopes could be accurate, but they 

are slow and labor-intensive [2]. To cope with this 

drawback, several computational approaches have been 

developed as an alternative to predict subcellular 

localizations, among others: PSORTb v.3 [3], CELLO [4], 

PSLpred [5], LOCtree [6], P-CLASSIFIER [7], and GNeg-

mPLoc [1], which cover different types of algorithms such 

as support vector machines (SVM), amino-acid composition, 

Bayesian networks, signal peptides, motif matching, 

homology based prediction, hidden Markov models (HMM), 

and text labeling among others. In general terms, they all 

report adequate performance, but, in spite of the low false 

positive rate in most of them, a high false negative rate 

remains. 

 

In this work, a method to predict five distinct subcellular 

localizations in Gram negative bacteria is developed. The 

method uses local features patterns distributed along the 

protein sequence. The identification of such patterns is done 

by using the continuous wavelet transform, which has shown 

to be a powerful tool for the characterization of motifs [8,9]. 

However, the most important aspect, in the wavelet analysis, 

is the protein representation; here, we introduce the use of 

pairwise protein contact potentials in conjunction with the 

wavelet transform, in order to identify strongly conserved 

local features correlated with a specific cellular 

compartment. Thus, the Aaindex database, which comprises 
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47 protein pairwise contact potentials, is used [10]. These 

potentials are obtained from statistical analysis and have 

been extensively used to predict protein structures [11]. 

After all proteins are decomposed in their own local 

features, a clustering and modeling module based on HMM 

allows to compress all local features in a set of profiles [12] 

that can be used further as features to train an SVM and 

make a prediction. 

 

Comparisons are made with three of the currently active 

services for subcellular localization prediction in Gram-

negative bacteria: Psortb, CELLO and SOSUIGramN.  In this 

work, the statistical contact potentials have shown to be a 

useful representation of the proteins. Then, if a set of 

proteins has similar interactions among adjacent amino acids 

at any position in the proteins, the wavelet transform can 

efficiently detect those interactions. Unlike SOSUIGramN, 

CELLO and Psortb in which several types of protein 

representations had been proposed (amino acid composition, 

partitioned amino acid composition, local amino acid 

composition, SCL-blast, signal peptides, N and C-terminal 

composition, profile motifs among others) the wavelet-based 

method involves just the local feature representation. 

Thoroughly, Psortb uses a set of known profile motifs per 

subcellular localization in contrast to the proposed method 

which generates its own set of profiles. SOSUIGramN 

consists of a set of filters in which proteins are divided into 

ten segments and compute average values of 

physicochemical properties. CELLO divides the sequence 

into k subsequences of equal length and each partition is 

encoded by a particular amino acid composition. On the 

other hand, the proposed method uses core local features 

encoded by the amino acid sequence, thus making use of the 

main protein information contained in the amino acid 

distribution.  Results show the potential-wavelet method as a 

reliable and efficient alternative to improve the performance 

in the prediction of protein subcellular localization in Gram 

negative bacteria. 

 

II. MATERIALS AND METHODS 

The method is divided into two principal stages as follows:  

1) a local feature descriptor that represents a set of 

sequences belonging to a determined subcellular location by 

a set of profiles based on HMMs. This descriptor assumes 

the proteins to be folded in many structural elements 

(motifs) which are conserved among related proteins. 

Particularly, these motifs are more frequent to the function 

that they develop than any other. 2) A classification 

framework makes use of those profiles (local features) to 

build a representation space, in which, a query protein is 
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depicted as a vector of protein-profile distances. If there are 

similarities among profiles and query sequences, they would 

produce similar distributions. Thus, classifiers such as SVM 

may then identify these distributions and hence make an 

appropriate prediction. A general scheme of the method is 

shown in Figure 1 

A. Protein numerical representation 

A protein sequence  5 L <O5á å OÜ å Oç= of length t can be 

represented in terms of the numerical signal �B L

<B5á å BÜ åBç= by the contact potential Y  (see Figure 2-left),  

where, f
i
 
>s

i
,s

i+1
] is the pairwise contact potential between 

the ith and E E sth amino acid, e.g., for the sequence 

S={ARGNG},  the numerical representation is given by the 

pairwise contact potential between the adjacent amino acids 

as follows: 

f ^
>A,R@�
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>N,G]�
>G,N]}  

 

B. Local feature detection 

Given a numerical signal f(t), the Continuous Wavelet 

Transform (CWT) allows the identification of patterns 

located, simultaneously, in both scaling and spatial 

information. It provides the localization of conserved and 

variable length sub-sequences along the protein sequence S 

(Figure 2b).  

 

Figure 1: General workflow of the method. Local feature descriptor 
(left): The modeling data set is depicted as a set of HMMs as: A-B) 
Sequences from a specific subcellular localization are decomposed 
into a set of subsequences by the wavelet transform. Then, C) 
subsequences in each cellular compartment are clustered, thus, D) 
each group is modeled by a profile HMM. Classification framework 
(right)  E) Protein-profile distances are computed over the control 
data set. Then,  a feature space based on this distances is used to 
test the validity of the profiles. F) A SVM with 10 fold cross validation 
is carried out following the one-against-all strategy. Parameters on 
the SVM are tunned by the particle swarm optimization. 

 

The CWT is defined as the projection of a function or the 

signal f (t) onto the wavelet function:   
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where ¥
a,b

(t)  is the basis wavelet function at a particular 

scale a and a translation b, a,bÐR, a����,Q�RUGHU�WR�LGHQWLI\�
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 conserved regions throughout the sequence, the W
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matrix is decomposed into binary matrices W
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where N
a
 is the total number of scales and t is the length of 

the sequence.  

The general mean value of W
f
 is used as a threshold thr. This 

value defines the boundary of the conserved regions over the 

protein sequence. Thus, the amino acid sub-sequence x
j
 

related to each one of the region �
j
 given W

+

f  and W
í

f  is 

found. Therefore, the protein sequence S can be represented 

as a set of k variable length sub-sequences x
s
={x

1
,...,x

k
}  

 

Wavelet coefficients W
f
 represent the adjacent and non-

adjacent amino acid interactions of variable-length, 

depending on the scale. These interactions are given by the 

maximal and minimal patterns. This is the reason why the 

matrix W
f
 should be decomposed into the W

+

f  andW
í

f  

matrices. 

 

 

 

 

 

 

 

Figure 2: (left) Numerical representation of the amino acid sequence 
by some protein contact potential. (right) The continuous wavelet 
transform decompose the series f(t) into a set of coefficients through 
the sequence  allowing the identification of specific patterns 
contained by the protein. 
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C. Clustering 

Let the complete set of sub-VHTXHQFHV� 2� defined as the 

collection of all k founded fragments by the wavelet 

transform (i.e., all objects given by the wavelet 

decomposition of all cytoplDVPLF�SURWHLQV���2EMHFWV�LQ�2�Dre 

JURXSHG� XVLQJ� WKH� VRIWZDUH� SDFNDJH� &OXVWDO�
� >13]. Thus, 

the resulting dendrogram preserves the structural 

relationship among subsequences and localization. In order 

to identify the optimal number of clusters, the 

DynamicCutTree, which is a fast and accurate method for 

cutting tree, is used [14]. So, when the clustering step is 

done, a set of related sequences is now expressed as a set of 

clusters � ^�
1
,...,�

l
} preserving the core features of the 

sequences. 

 

D. Profile HMMs 

Consider a set of sequences �
i
 with a similar amino acid 

distribution. The profile HMM h
i
 is a statistical model for 

these sequences, in that for any query protein, it defines a 

probability whether protein belongs or does not to the set �
i
. 

as introduced to model protein families and domains [12]. 

Several software packages implement profile HMMs with an 

important difference in the architecture they adopt. These 

methods are based on the original profile HMMs proposed in 

[12]. HMMER3, which uses a robust model architecture to 

deal with multiple domains, sequence fragments and local 

alignments is used to build a profile HMM for each cluster. 

Thus, each subcellular localization is depicted as a set of 

profiles H={h
1
,...,h

k
}  

E. Local feature map 

The local feature space can be viewed as the distribution of 

the protein sequences over the profiles HMMs, in which the 

profile-protein relationship P(S|h
i
) is the probability that the 

sequence S belongs to profile h
i
. Since sequences may 

contain the same domain multiple times, the value of the i 

profile is set to ø(i)=max
1..n

{P(S|h
i
)}, where ø(i) is the 

probability of the highest scoring of protein S on the profile 

HMM h
i
.  

Table1 The overall performance of the wavelet-based method with a 
10-fold cross validation 

 

F. Classification framework 

Once the protein sequences from the control data set are 

mapped onto the profiles HMMs, the SVM is used as 

predictor. A 10-fold cross validation procedure is used to 

obtain performance results. Redundant information on the 

profile space is removed by means of the fast correlation-

based filter algorithm [15]. In addition, Principal Component 

Analysis (PCA) is applied to this space, after which the first 

five principal components are selected. SVMs are designed 

following the one-against-all strategy that produces a strong 

class imbalance, and thus, the Synthetic Minority Over-

sampling Technique SMOTE is employed [17]. Parameters 

of the SVM are tuned using the Particle Swarm Optimization 

algorithm [18].  

 

In order to find the best representation per class, all 47 

statistical contact potentials from aaindex are used to 

decompose the proteins, so, each cellular compartment 

comprises 47 classifiers. Then, the best one with the highest 

performance score is selected. This selection process is out 

of the classification framework avoiding bias and 

overtraining. 

 

III. RESULTS AND DISCUSSION 

A. Database 

In order to build the local feature descriptor  500 

cytoplasmic proteins, 500 inner membrane proteins, 359 

periplasmic proteins, 349 outer membrane proteins and 288 

extracellular proteins were selected from ePSORTdb [19], 

omitting sequences with an identity percent superior to 60%. 

This dataset is called the modeling dataset. A control dataset 

reported in [20] had been used to test all methods. This 

control dataset comprises 299 protein sequences distributed 

as follows: 145 cytoplasmic proteins, 69 cytoplasmic 

membrane proteins, 29 periplasmic proteins, 38 outer 

membrane proteins and 18 extracellular proteins. In addition, 

any proteins sharing >60% identity of modeling data set with 

respect to the control data set were removed. All identity 

filters were carried out using the software cdHit [16].  

 

To evaluate and compare the performance of the methods, 

both measures, sensitivity 5J L
ÍÉ

ÍÉ>¿Ç
, and specificity 

5L L
ÍÇ

¿É>ÍÇ
 are used, where TP, FP, TN, and FN denotes 

true positive, false positive, true negative and false negative, 

respectively. The following web servers are used to predict 

the subcellular localizations in addition to the standalone 

version of Psortb V3.0.2, CELLO version 2.5 and 

SOSUIGramN. In order to ensure that psortb classifications 

are not biased, the modeling data set is used in the blast 

module, so, the predictions are carried out on the control 

data set. Also, it is necessary to clarify that is not possible to 

verify whether test sequences are or are not in the training 

set of CELLO and SOSUIGramN servers. Performance 

prediction of the wavelet-based method and the 

corresponding comparisons are shown in Table 1. 

 

 Wavelet* Psortb SOSUIGram CELLO  

 %Sn %Sp %Sn %Sp %Sn %Sp %Sn %Sp 

C 0.92    0.92 0.82 0.97 0.90 0.88 0.93 0.83 

CM 0.78 0.99 0.82 0.99 0.72 0.99 0.62 0.99 

P 0.93 0.98 0.79 0.99 0.59 0.98 0.50 0.97 

OM 0.86 0.98 0.81 1.00 0.92 0.99 0.55 0.96 

E 0.83 0.99 0.77 0.99 0.50 0.99 0.44 0.96 

Av 0.88 0.98 0.82 0.99 0.81 0.98 0.73 0.95 
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The performance of the individual methods reveals that the 

wavelet approach achieves the highest overall sensitivity. 

This fact can be highlighted in ³periplasmic´ and 

³extracellular´� ORFDOL]DWLRQV�� LQ�ZKLFK� WKH�SURSRVHG method 

has a significant increase above 10% over psort, 

SOSUIGramN and CELLO. Also, the specificity for these 

classes are basically the same in all methods showing that 

the wavelet approach can improve the true positive rate 

holding a low false positive rate (Table 1). For cytoplasmic 

proteins, CELLO shows the highest sensitivity (0.93) 

followed by the proposed approach (0.92), SOSUIGramN 

(0.89) and psort (0.82). However, CELLO and 

SOSUIGramN have a low specificity (0.83 and 0.88 

respectively) which is interpreted as a high false positive 

rate.  

 

A protein can remain in the cytoplasm or be targeted into 

different sites by a transport system, and thus, proteins 

DVVRFLDWHG�WR�WKH�³F\WRSODVP´�ORFDOL]DWLRQ�DUH�KLJKO\�diverse 

and comprise a big variety of domains. It is also the case of 

transmembrane proteins, which are simultaneously located 

on both sides of the membrane and transport molecules from 

one side to the other, making difficult to characterize this 

kind of proteins through local features  (we use this term to 

refer to domains, motifs and sites). Accordingly, both 

³cytoplasmic´ and ³outer membrane´ are the classes with 

the lowest performances of sensitivity in comparison to 

psortb and SOSUIGramN, respectively. Psortb shows an 

upper sensitivity of 5% respect to the proposed method, 

while the specificity remains equal. For ³outer membrane´ 

proteins, SOSUIGramN achieved the best sensitivity of 92% 

followed by our method and psortb with a 6% and 11% 

upper, respectively.  

 

IV. CONCLUSIONS 

For the five major subcellular localizations in Gram-negative 

bacterial proteins, the wavelet method showed the best 

performance prediction decreasing the false negative rate 

and holding the false positive rate. One of the main 

advantages of the method is its capability to find correlated 

and variable length local features, followed by a precise 

representation by HMMs. Thus, the proposed contact-

potential characterization is an alternative to the classic 

models based on the amino acid composition and 

physicochemical properties. This method, unlike Psortb, 

CELLO and SOSUIGramN, uses just one protein 

characterization. As future work, the implementation of 

other representations such as physicochemical properties, 

amino acid composition, or homology modules like blast can 

be implemented to improve even more the final result.  

 

Acknowledgments: This work is within the framework of 

the DirecciondeInvestigaciones de Manizales (DIMA) of the 

Universidad Nacional de Colombia and the Centro de 

Investigacion of the InstitutoTecnologico Metropolitano. 

The work has been partially funded by Colciencias grant 

111952128388 and by Jovenes Investigadores e Innovadores 

2010, Convenio Interadministrativo Especial de 

Cooperacion No. 146 de enero 24 de 2011 between 

COLCIENCIAS and Universidad Nacional de Colombia 

Sede Manizales 

V. REFERENCES 

 
[1] Chou, Kuo-Chen, and Hong-Bin Shen. "Cell-PLoc: a package of Web 

servers for predicting subcellular localization of proteins in various 

organisms." Nature protocols 3.2 (2008): 153-162. 

[2] Dunkley, Tom PJ et al. "Localization of organelle proteins by isotope 

tagging (LOPIT)." Molecular & Cellular Proteomics 3.11 (2004): 

1128-1134. 

[3] Yu, Nancy Y et al. "PSORTb 3.0: improved protein subcellular 

localization prediction with refined localization subcategories and 

predictive capabilities for all prokaryotes." Bioinformatics 26.13 

(2010): 1608-1615 

[4] Yu, Chinæ Sheng et al. "Prediction of protein subcellular localization." 

Proteins: Structure, Function, and Bioinformatics 64.3 (2006): 643-

651. 

[5] Bhasin, Manoj, AartiGarg, and GPS Raghava. "PSLpred: prediction of 

subcellular localization of bacterial proteins." Bioinformatics 21.10 

(2005): 2522-2524. 

[6] Nair, Rajesh, and BurkhardRost. "Mimicking cellular sorting 

improves prediction of subcellular localization." Journal of molecular 

biology 348.1 (2005): 85-100. 

[7] Wang, Jiren et al. "Protein subcellular localization prediction for 

Gram-negative bacteria using amino acid subalphabets and a 

combination of multiple support vector machines." BMC 

bioinformatics 6.1 (2005): 174. 

[8] Murray, Kevin B, Denise Gorse, and Janet M Thornton. "Wavelet 

transforms for the characterization and detection of repeating motifs." 

Journal of molecular biology 316.2 (2002): 341-363 

[9] Arango-Argoty, GA et al. "Prediction of protein subcellular 

localization based on variable-length motifs detection and 

dissimilarity based classification." Engineering in Medicine and 

Biology Society, EMBC, 2011 Annual International Conference of the 

IEEE 30 Aug. 2011: 945-948. 

[10] Kawashima, Shuichi, and Minoru Kanehisa. "AAindex: amino acid 

index database." Nucleic acids research 28.1 (2000): 374-374. 

[11] Shen, Minæ yi, and Andrej Sali. "Statistical potential for assessment 

and prediction of protein structures." Protein Science 15.11 (2009): 

2507-2524 

[12] Finn, Robert D, Jody Clements, and Sean R Eddy. "HMMER web 

server: interactive sequence similarity searching." Nucleic acids 

research 39.suppl 2 (2011): W29-W37. 

[13] Sievers, Fabian et al. "Fast, scalable generation of high-quality protein 

multiple sequence alignments using Clustal Omega." Molecular 

systems biology 7.1 (2011). 

[14] Langfeldera, Peter, Bin Zhangb, and Steve Horvatha. "Dynamic Tree 

Cut: in-depth description, tests and applications." (2007). 

[15] Yu, Lei, and Huan Liu. "Feature selection for high-dimensional data: 

A fast correlation-based filter solution." MACHINE LEARNING-

INTERNATIONAL WORKSHOP THEN CONFERENCE- 21 Aug. 

2003: 856 

[16] Li, Weizhong, and Adam Godzik. "Cd-hit: a fast program for 

clustering and comparing large sets of protein or nucleotide 

sequences." Bioinformatics 22.13 (2006): 1658-1659. 

[17] Chawla, Nitesh V. et al. "SMOTE: synthetic minority over-sampling 

technique." arXiv preprint arXiv:1106.1813 (2011). 

[18] Clerc, Maurice. Particle swarm optimization. Wiley-ISTE, 2010. 

[19] Nancy, Y Yu et al. "PSORTdb²an expanded, auto-updated, user-

friendly protein subcellular localization database for Bacteria and 

Archaea." Nucleic acids research 39.suppl 1 (2011): D241-D244. 

[20] Gardy, Jennifer L, and Fiona SL Brinkman. "Methods for predicting 

bacterial protein subcellular localization." Nature Reviews 

Microbiology 4.1 (2006): 741-751. 

 

 

646


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

