
Efficient Markov Clustering Algorithm for Protein Sequence Grouping*

László Szilágyi1 and Sándor M. Szilágyi2

Abstract— In this paper we propose an efficient reformula-
tion of a Markov clustering algorithm, suitable for fast and
accurate grouping of protein sequences, based on pairwise
similarity information. The proposed modification consists of
optimal reordering of rows and columns in the similarity
matrix after every iteration, transforming it into a matrix with
several compact blocks along the diagonal, and zero similarities
outside the blocks. These blocks are treated separately in
later iterations, thus reducing the computational burden of
the algorithm. The proposed algorithm was tested on protein
sequence databases like SCOP95. In terms of efficiency, the
proposed solution achieves a speed-up factor in the range 15-
50 compared to the conventional Markov clustering, depending
on input data size and parameter settings. This improvement
in computation time is reached without losing anything from
the partition accuracy. The convergence is usually reached in
40-50 iterations. Combining the proposed method with sparse
matrix representation and parallel execution will certainly lead
to a significantly more efficient solution in future.

I. INTRODUCTION

Establishing protein families in large databases is one of
the fundamental goals of functional genomics. A successful
classification may contribute to the delineation of functional
diversity of homologous proteins, and can provide valuable
evolutionary insights as well [1]. By definition, protein fam-
ilies represent groups of molecules with relevant sequence
similarity [2]. Members of such protein families may serve
similar or identical biological purposes [3]. Identifying these
families is generally performed by clustering algorithms,
which are supported by pairwise similarity or dissimilarity
measures. Well established properties of some proteins in the
family may be reliably transferred to other members whose
functions are not well known [4].

TRIBE-MCL is an efficient clustering method based on
Markov chain theory [5], introduced by Enright et al [1]
for protein sequence grouping. TRIBE-MCL assigns a graph
structure to the protein database in such a way that each
protein has a corresponding node, while initial edge weights
in the graph represent computed pairwise similarity values,
obtained via BLAST search methods [6]. Clusters were

*Research supported by the Hungarian National Research Funds (OTKA),
Project no. PD103921, and the Hungarian Academy of Sciences through the
János Bolyai Fellowship program.

1L. Szilágyi is with Dept. of Electrical Engineering, Sapientia University,
Calea Sighişoarei 1/C, 540485 Tı̂rgu Mureş, Romania (phone: +40-265-206-
210; fax: +40-265-206-211; e-mail: lalo at ms.sapientia.ro)
and with Dept. of Control Engineering and Information Technology, Bu-
dapest University of Technology and Economics, Magyar tudósok krt. 1,
1117 Budapest, Hungary (phone: +36-1-463-4027; fax: +36-1-463-2699).

2S. M. Szilágyi is with Dept. of Mathematics-Informatics, Petru Maior
Univesity, Str. N. Iorga nr. 1, 540088 Tı̂rgu Mureş, Romania (phone/fax:
+40-265-262-275; e-mail: szsandor72 at yahoo.com).

then obtained by alternately applying two operations to the
similarity matrix: inflation and expansion.

In a previous paper [7] we proposed a modification of the
TRIBE-MCL algorithm, in order to enhance its accuracy,
improve its reliability and slightly weaken its computational
load. These were achieved by introducing a time varying in-
flation rate and thus forcing the algorithm to apply a stronger
inflation in the first iterations when the hard structure of the
clusters is established, and reducing inflation strength for fine
tuning the cluster shapes in later iterations. The acceleration
of the computations was served there by a singleton filter,
which excluded isolated nodes from the similarity graph
that had no influence on other nodes in later iterations. In
this paper we introduce a more efficient approach aimed at
accelerating the execution speed of the algorithm, without
damaging the outcome of the clusters. This is achieved with
an optimal transformation of the similarity matrix, applied in
the first iterations of the algorithm, when the hard structure
of the partition is established.

The remainder of this paper is structured as follows: Sec-
tion II takes into account the functional details of the TRIBE-
MCL algorithm and presents our motivations to introduce
modifications. Section III presents the details of the proposed
efficient TRIBE-MCL algorithm. Section IV evaluates and
discusses the efficiency of the proposed method. Section V
presents the conclusions and gives some hints for further
research.

II. BACKGROUND

TRIBE-MCL is an iterative algorithm, which operates on a
directional graph. Each of the n nodes of the graph represents
a protein sequence from the set we wish to cluster, while
each edge length sij , i, j = 1 . . . n, shows the similarity
between protein sequences of index i and j, respectively.
Edge lengths are stored in the similarity matrix S ∈Mn×n.
Initial edge lengths usually come from pairwise sequence
alignment. During the iterations, S behaves as a column
stochastic matrix, whose elements represent probabilities of
transitions (evolution).

The TRIBE-MCL algorithm consists of two main op-
erations, namely the inflation and expansion, which are
alternately repeated until a convergence is reached, that is,
the similarity matrix becomes invariant during a cycle:

1) Inflation has the main goal to differentiate among
connections within the graph, by favoring more likely
direct walks along the graph in the detriment of less
likely walks. It is computed via taking each element
of the similarity matrix to the power of r > 1.
The strength of this differentiation is controlled by

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 639

the so called inflation rate r: large values express
the preference of likely walks more severely, causing
sudden ruptures within the graph, possibly not in the
ideal place. Low inflation rates are more likely to yield
smooth partitions, but the convergence may become
rather slow.

2) Expansion operation is intended to reveal possible
longer walks along the graph, to emphasize changes
within the protein structures that happened in two or
more evolutionary steps. Expansion is achieved via
matrix multiplication, by taking similarity matrix S to
the second power.

Auxiliary computations are also included in each iteration,
in order to maintain the similarity matrix S as a symmetric
column stochastic matrix.

Clusters are defined as connected subgraphs within the
graph described by the similarity matrix, so a stable state
of the similarity matrix means that the clusters don’t change
their contents during an iteration.

In a previous paper [7], we have proposed a series of
generalizations of the conventional version of the TRIBE-
MCL algorithm [1], e.g. time-variant inflation rate, gener-
alized inflation scheme, singleton filter, etc. These changes
brought slight improvements to the accuracy and efficiency
of the algorithm.

III. MATERIALS AND METHODS

In this paper we introduce an efficient formulation of the
TRIBE-MCL algorithm, with the aim of seriously reducing
its computational load, without harming the accuracy of the
partitioning. We will test the proposed method on the proteins
of the SCOP95 database.

A. The SCOP95 Database

The SCOP (Structural Classification of Proteins) database
contains protein sequences in order of tens of thousands,
hierarchically classified into classes, folds, superfamilies and
families [8]. The SCOP95 database involved in this study, is
a subset of SCOP (version 1.69), which contains 11944 pro-
teins, exhibiting a maximum similarity of 95% among each
other. Pairwise similarity and distance matrices (BLAST [6],
Smith-Waterman [9], Needleman-Wunsch [10], PRIDE [11],
etc.) are available at the Protein Classification Benchmark
Collection [12]. In this study we employ BLAST similarity
measures, because that one suppresses low similarities, thus
contributing to computational load reduction.

B. Cluster Separation

Most of the computational load of the algorithm is caused
by the matrix multiplication, which has a theoretical com-
plexity of O(n3). In order to reduce runtime, it would be
beneficial at any time of the execution, to separate those
proteins which no longer have any influence upon the others.
This idea we employed in the previous paper [7], where
we proposed to exclude the rows and columns of singletons
from the similarity matrix in each iteration. This way we

achieved 30%−50% reduction of the overall processing time,
depending on the percentage of singletons within the data.

In the following, we will formulate a more optimal sep-
aration scheme of clusters. Let us denote by Σ the initial
set of proteins, which is intended to be classified. At any
iteration t, we may look for connected subgraphs in the graph
represented by the similarity matrix S. Whenever we find a
subset of proteins Σ1 ⊂ Σ, corresponding to a connected
subgraph, isolated from the rest of the proteins (sij = 0,
∀i ∈ Σ1 and j ∈ Σ \ Σ1), in further iterations we may treat
the proteins of Σ1 separately from the others, because the
rows and columns of S corresponding to these proteins will
not interact with any other rows and columns. If we reorder
all rows and columns of the similarity matrix S such that
connected and isolated subgraphs are placed in consecutive
rows and columns, we will have a similarity matrix formed
by small square shaped blocks of nonzero elements placed
along the main diagonal, and all other elements of the matrix
will be zero.

In order to implement this idea, we need to define a
reordering buffer R of size n, which will contain the grouped
protein indexes corresponding to connected and isolated
subgraphs in the graph represented by S. Further on, we need
a group buffer Q to store the indexes of initial elements of
protein groups within the reordering buffer. The latter buffer
will need a time-variant size of storage (denoted by q), but
it will never exceed the limit of n items.

Identifying the connected subgraphs is performed as fol-
lows:
• Initialize the count of found nodes m = 0, found

subgraphs q = 0, map (set) of found nodes M = Φ.
• While there exists node in the graph not yet mapped

(m < n), find next such node having index i. Increment
q, and let Qq = i; increment m, add element m to
set M and let Rm = i. Recursively search graph for
nodes j connected to node i (with criterion sij > 0),
include all found nodes into the set M , incrementing
counter m accordingly, and inserting each j into buffer
R (Rm = j).

• When the above loop ends, m should be equal to n,
and M contains all nodes, because they are all found.
The output of this step is the ordered buffer R, and the
group buffer Q indicating the q separated groups.

Having the isolated groups of nodes separated, we may
reformulate the operations performed within each iteration
as follows. For each square block along the diagonal of
reordered matrix S, that is, for each b ∈ {1, 2, . . . , q}, we
consider the subset of proteins in the connected subgraph
Σb = {RQb

, RQb+1, . . . , RQb+1−1} assuming that Qq+1 =
n+ 1, and then
• inflation is computed as:

s
(new)
αβ =

(
s

(old)
αβ

)r
∀α, β ∈ Σb, (1)

• expansion is given by the formula:

s
(new)
αβ =

∑
γ∈Σb

s(old)
αγ s

(old)
γβ ∀α, β ∈ Σb, (2)

640

• normalization is given by:

s
(new)
αβ = s

(old)
αβ

∑
γ∈Σb

s
(old)
γβ

−1

∀α, β ∈ Σb,

(3)
• symmetry is approximated as:

s
(new)
αβ = s

(new)
βα =

√
s

(old)
αβ s

(old)
βα (4)

∀α, β ∈ Σb, α < β. After symmetrization, similarity
values below ε are reduced to 0.

The proposed algorithm is summarized as follows:
1) Define input protein set Σ.
2) Compute (or load) the initial similarity matrix S.
3) Set the parameters of the algorithm: inflation rate r > 1

and threshold ε ∈ [10−4, 10−3].
4) Initially assume, that the whole graph is connected:

initialize reordering buffer Ri = i ∀i = 1 . . . n, and
group buffer Q1 = 1 and q = 1.

5) Inflate the similarity matrix according to the inflation
rule described in Eq. (1), using inflation rate r.

6) Symmetrize and normalize the similarity matrix ac-
cording to Eqs. (3) and (4), neglecting elements smaller
than the threshold ε.

7) Identify connected and isolated subgraphs in the graph
represented by S. Update buffers R and Q accordingly.

8) Expand the similarity matrix using Eq. (2).
9) Repeat steps 5-8 until matrix S and its connected

subgraphs stabilize.

C. Efficient and Parallel Execution

At the beginning, almost the whole set of input data is
situated within a connected graph. In each iteration, the
inflation suppresses low valued (but non-zero) similarity
values, which makes connections disappear, thus causing
ruptures within the graph. Whenever a subset of nodes gets
isolated from others, it will never get connected again. This
is assured by the nature of the performed operations. By
reordering the rows and columns of the similarity graphs,
we obtain blocks of non-zero values along the diagonal of
matrix S. What is also important to remark here is that data
situated in separate blocks will not have any influence on
each other anymore during the execution. Theoretically, if
we divide the n input data into ν equal blocks, then the
execution time of the expansion reduces ν2 times. The other
operations preformed in each iteration also profit from this
reformulation, and the extra work to be performed, namely
the identification of isolated clusters, is very effective.

Separated blocks within the similarity matrix can be
processed in separate parallel threads, although this is not
yet implemented. The final clusters obtained by each thread
should be merged after parallel processing. Parallel threads
have the possibility to execute for each separate block only
the necessary amount of iterations to reach the convergence,
eliminating unnecessary iterations for quickly converging
blocks.

IV. RESULTS AND DISCUSSION

The main goal of protein clustering is to reveal hidden
similarities among proteins. When evaluating the accuracy
of the output, one can count the number of mixed clusters
(those which contain proteins from two or more different
families) and their cardinality. We have shown in the previous
work [7], that the inflation rate is the main factor to influence
the amount of mixed clusters. The approach proposed here
computes exactly the same partitions as the conventional
TRIBE-MCL, in a more efficient way. That is why the
evaluation of accuracy is unnecessary in this study. The
reader interested in accuracy details is referred to [7]. All
efficiency tests were run on PC with quad core Intel i5
processor running at 2.53GHz frequency, and 4GB RAM.

We have employed the proposed algorithm to classify ei-
ther the whole set of 11944 proteins in the SCOP95 database,
or selected subsets. At the selection of subsets, whole fam-
ilies were chosen from the hierarchical data structure, in
order to keep all connections of each selected protein. The
hierarchical structure of the SCOP database was only used
to select input data and verify the final partition accuracy.
Partitioning only uses the pairwise similarity data.

Fig. 1. The duration of the first 50 iterations, using the proposed method
at various inflation rates, to classify 908 proteins from SCOP95

Fig. 1 summarizes some efficiency tests performed on a
set of 908 proteins (all families from SCOP95 which have
11 to 14 proteins): varying the inflation rates between 1.3
and 2.0, the duration of each iteration was recorded and
plotted in this figure. In only 4-6 iterations, the large con-
nected block within the similarity graph is broken into small
subgraphs, enabling us to compute subsequent iterations on
small matrices. Late iterations are performed approximately
1000 times quicker. Although the computation load stabilizes
at a low level after the initial five iterations, the convergence
of the output data requires around 40-50 cycles. Without this
proposed efficient scheme, all iterations would need the same
amount of computations as the first one. This way we are able
to approximate the speed-up ratio reached via fragmenting
the similarity matrix.

Figs. 2 and 3 present efficiency results of the proposed
method on various data sets, using a fixed inflation rate
r = 1.5. Fig. 2 indicates the duration of each iteration, while
Fig. 3 plots the cardinality of the largest connected subgraph
in the similarity graph. In every case, the two characteristics

641

correlate in the sense, that squaring larger matrices requires
a lot more time. The other operations only have slight effects
on execution time. Data sets involved in the tests reported
here were chosen as all protein families with cardinality
between 10-15 (1288 proteins), 10-20 (2106 proteins), 8-30
(3887 proteins), 5-50 (6522 proteins).

Fig. 2. The duration of the first 50 iterations, using the proposed method
with various input data sets, plotted on logarithmic scale, using inflation
rate r = 1.5

Fig. 3. The size of the largest connected subgraph after each of the first
50 iterations, for various input data sets, using inflation rate r = 1.5

Let us remark some trends identified from Figs. 1-3:
1) In every case, we needed a few iterations to break the

similarity graph into several small isolated subgraphs.
The larger the input data set, the more iterations are
necessary. Using an inflation rate fixed at a reasonable
value (r = 1.5), a set of 1000 proteins requires 3
slow loops at the beginning, while at 5000 proteins, the
fourth iteration is slow as well. One can expect that 105

proteins will need no more than 6-7 slow iterations.
2) Choosing a larger inflation rate reduces the number

of slow iterations. However, it is not recommended to
use very high inflation rates, because they yield small
clusters in the output, which will hardly reveal any
biologically relevant protein similarities.

Table I gives us a summary of speed-up ratios reached
on input data of various sizes, at different inflation rates.
These values were computed against the performance of the
conventional TRIBE-MCL algorithm, which computes the
whole similarity matrix in every iteration and thus all its
iterations last as long as the first loop in our approach. Even
higher speed-up ratios are reachable using sparse matrix
representation of the similarity matrix, especially in the first

TABLE I
SPEED-UP RATIOS REACHED BY THE PROPOSED EFFICIENT EXECUTION

SCHEME

Proteins Inflation rate Speed-up ratio
1288 1.5 23.02
2106 1.5 21.87
3877 1.5 19.52
6522 1.5 18.26
908 1.3 16.22
908 1.5 25.99
908 1.7 32.77
908 2.0 48.63

iterations, while the majority of nodes in similarity graph are
connected to each other. Parallel execution can also improve
the efficiency of the algorithm.

V. CONCLUSIONS

In this paper we have proposed an efficient, paralleliz-
able implementation scheme for the graph-based TRIBE
MCL clustering method, a useful tool in protein sequence
grouping. With this novel formulation, late iterations of the
algorithm are performed up to 1000 times quicker, and the
overall runtime becomes 15-50 times shorter, than in the
conventional case. This speed-up is achieved without any
damage of the partition accuracy. Future work will aim at
exhaustive tests on larger data sets and the combination of
the proposed method with sparse matrix representation and
parallel execution, to reduce execution time with another
order of magnitude.

REFERENCES

[1] A. J. Enright, S. van Dongen, C. A. Ouzounis, “An efficient algorithm
for large-scale detection of protein families”, Nucl. Acids Res., vol.
30, pp. 1575–1584, 2002.

[2] M. O. Dayhoff, “The origin and evolution of protein superfamilies”,
Fed. Proc., vol. 35, pp. 2132–2138, 1976.

[3] H. Hegyi, M. Gerstein, “The relationship between protein structure
and function: a comprehensive survey with application to the yeast
genome”, J. Mol. Biol., vol. 288, pp. 147–164, 1999.

[4] A. Heger, L. Holm, “Towards a covering set of protein family profiles”,
Prog. Biophys. Mol. Biol., vol. 73, pp. 321–337, 2000.

[5] S. R. Eddy, “Profile hidden Markov models”, Bioinform., vol. 14, pp.
755–763, 1998.

[6] S. F. Altschul, T. L. Madden, A. A. Schaffen, J. Zhang, Z. Zhang,
W. Miller, D. J. Lipman, “Gapped BLAST and PSI-BLAST: a new
generation of protein database search program”, Nucl. Acids Res, vol.
25, pp. 3389–3402, 1997.

[7] L. Szilágyi, L. Medvés, S. M. Szilágyi, “A modified Markov clus-
tering approach to unsupervised classification of protein sequences”,
Neurocomput., vol. 73, no. 13-15, pp. 2332–2345, 2010.

[8] A. Andreeva, D. Howorth, J. M. Chadonia, S. E. Brenner, T. J. P.
Hubbard, C. Chothia, A. G. Murzin, “Data growth and its impact on
the SCOP database: new developments”, Nucl. Acids Res., vol. 36, pp.
D419–D425, 2008.

[9] T. F. Smith, M. S. Waterman, “Identification of common molecular
subsequences”, J. Mol. Biol., vol. 147, pp. 195-197, 1981.

[10] S. B. Needleman, C. D. Wunsch, “A general method applicable to the
search for similarities in the amino acid sequence of two proteins”, J.
Mol. Biol., vol. 48, pp. 443-453, 1970.

[11] Z. Gáspári, K. Vlahovicek, S. Pongor, “Efficient recognition of folds in
protein 3D structures by the improved PRIDE algorithm”, Bioinform.,
vol. 21, pp. 3322–3323, 2005.

[12] Protein Classification Benchmark Collection, available at:
http://net.icgeb.org/benchmark

642

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

