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Abstract— In sequencing results, the quality score is reported
for each base, representing the probability that the base is called
incorrectly. The notion of quality scores was initially developed
for conventional Sanger sequencing, but is widely used for
next-generation sequencing techniques, including Illumina. In
this paper, we carry out in-depth analysis of quality scores
reported for Illumina reads and present how they are related
to real errors in the reads. We confirmed strong interrelation
between quality scores and real errors in Illumina reads,
and observed that reverse reads tend to have lower quality
scores than forward reads in paired-end reads do. In addition,
we discovered other interesting patterns from quality score
analysis. Our hope is that the findings in this paper will be
helpful for designing error-correction and/or filtering methods
for next-generation sequencing.

I. INTRODUCTION

Since the emergence of next-generation sequencing (NGS)

technologies, bioinformatics approaches have been very ac-

tive. Among existing NGS methods, Illumina sequencing

may be the most popular at the moment [1]. It can generate

enormous reads per run and is highly cost effective compared

to the other NGS methodologies although it is less accurate

[2], [3]. In terms of the market share, almost two thirds

of NGS equipments are from llumina [4]. The inexpensive

productivity of a large volume of sequence data is the

primary advantage of Illumina sequencing.

However, it has higher error rates and much shorter read

lengths than traditional Sanger sequencing has. The short

read length can be tailored by merging the paired-end reads

generated from the same amplicon [5]–[7]. The higher error

rates can be compensated for by filtering out or correcting er-

rors. For any biological analysis, properly handling erroneous

reads is crucial for ensuring the correctness of downstream

genomic analysis.

Several studies reported position-specific and sequence-

specific effects and other reasons for Illumina errors. Miscall-

ing more frequently occurs during the first and last cycles [8].

GC rich regions can be miscalled more often than the others

by A to C and C to G [9]. Some other studies showed the
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Fig. 1. Example FASTQ file

effects of filtering methods such as B-tail trimming [10] or

quality-score-based end-trimming to a uniform length [11].

Some paired-end read-merging methods choose the base

which has the higher quality score as the right base, when

mismatches occur [12], [13].

In this paper, we focus on the quality score and perform an

in-depth analysis of its effects in various aspects. In addition,

we show possible filtering methods and their effects with

respect to different standards and present several points that

should be considered carefully when correcting a base by

merging.

II. BACKGROUND

When we use raw sequencing reads, we do not know the

exact error locations, but for each base in a read, we know

its error estimate Q. It is also known as the quality score
and is defined as Q = −10 log10(p), where p represents

the probability that the base calling is incorrect. In normal

sequencing results, Q ranges between 2 and 40.

The nucleotide sequence and its associated quality scores

are usually stored in the FASTQ format [14]. The quality

score of a base is encoded with a single character whose

ASCII value minus 33 corresponds to the quality score. For

instance, character ‘C’ represents the quality score of 34

and ‘#’ 2. Fig. 1 shows an example.

Illumina sequencers can easily generate multi-million

reads. Many reads are replicates since the sequencing cover-

age and the duplication rate are high. Discarding erroneous

data is thus effective to get reliable results and widely used

in practice. In this paper, we examine the following filtering

methods and their effects.

First, end trimming refers to a technique to remove all the

bases following a predetermined position in a given read.

The rationale behind this technique is that the probability

of error increases substantially as we go to the end of a

read in the Illumina sequencing technology. Second, read

filtering is to discard a read from downstream analysis if

the average quality score of the bases in that read is greater

than a threshold. Third, base substitution means replacing an

erroneous base by ‘N’ (wildcard symbol for nucleotides) in

case the quality score of the base is low.
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Fig. 2. Analysis Process. The top left represents filtering of raw reads
which have the wrong primer or ‘N’ base. The top right represents cutting
of the reference to the same length of reads from the primer. The middle
represents the matching process of reads to references with BLASTN. The
bottom shows the process comparing one of the reads and its reference.

III. MATERIALS AND METHODS

A. Data

We used a public artificial microbial dataset [15].

The total number of raw reads is over 4 million.

The length of each read is 125 nt with four different

types: C1-forward/reverse and C2-forward/reverse. The to-

tal number of the reference reads is 90. The primer

sequences are CCTACGGGAGGCAGCAG for forward and

ATTACCGCGGCTGCTGG for reverse.

B. Analysis

Fig. 2 shows the analysis process. First, we prepare the

filtered data set. Raw reads which have the wrong primer or

base ‘N’ are filtered out. Out of each reference, we select

only 125 bases starting from the primer. For the analysis in

the reverse direction, reference data should be reversed and

complemented due to the nature of paired-end reads.

To find the best matching reference for each read, we

execute BLASTN [16] with the default options. Through

this process, we postulate the most related reference as the

error-free sequence. Some inappropriate reads in the result

(e.g., ‘No HIT’ or erroneous starting base) are also filtered.

All reads and references start in the primer region. The

indel error is not taken into account in this paper because

Illumina sequencers have more substitution-type miscalls

than indels [17]. We then compare each read to the reference,

and each mismatching base is considered an error.

C. Evaluation metrics

For the end trimming technique, we define the ratio of

error in total (RET) for base position x as

RET =
# erroneous bases at x in all reads

# total number of errors in all reads
(1)

Fig. 3. Percentage distribution of reads and average quality score according
to the number of errors for each read. The bar graphs represent the
distribution of reads and the line graphs the average quality score of each
read. A series of blue dots represent the forward side and green ones
represent the reverse side.

For the read filtering method, we define RET for the

average score threshold q as

RET =
# errors in reads with average quality score �q�

# total number of errors in all reads
(2)

the ratio of error in read (RER) as

RER =
# errors in reads with average quality score �q�

# total number of bases in such reads
(3)

and the probability of erroneous read (PER) as

PER =
# erroneous reads with average quality score �q�

# all reads with average quality score �q� (4)

For the base substitution, we define the probability of

erroneous base (PEB) for the base with quality score r as

PEB =
# erroneous bases with quality score r

# all bases with quality score r
(5)

and the RET as

RET =
# erroneous bases with quality score r

# total number of errors in all reads
(6)

IV. EXPERIMENTAL RESULTS

A. Interrelation between the quality score and the number
of errors

Fig. 3 shows that the more errors in a read the lower

the average quality score. Errorless reads compose a large

percentage (about 70% in the whole), so most of the reads

can be thought of as reliable data without errors. The

distribution of reads is sharply lowered as the number of

errors increase, so 90% of the reads have less than 5 errors.

When we analyze based on the direction of the reads, the

reverse side shows a higher percentage of errorless reads

than the forward side does (forward: 66.9%; reverse: 72.1%),

which means that the reverse side has more reliable data than

the forward side has.

The most striking observation from this result is that the

reverse side has a lower quality score than the forward side

has in the same situation. If there are at least one or more
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Fig. 4. Quality score and error rates according to the reads base position.
(a) This chart shows the average quality score of each base position. The
blue line represents the average quality score of all reads and the red line
the score only if the base position has an error. (b) This chart shows actual
error rates according to the read position. The red line represents the ratio
of error in total (RET). We propose the blurred gray line as a secondary
polynomial which matches well the real error. The horizontal bar on the
bottom represents the distribution of data.

errors, the quality score of the reverse side is 5 points less

than the quality score of the forward side on average. This

observation may be considered when we merge paired-end

reads. Most merging methods compare the quality scores

when the two sides do not have the same base (called

mismatch) and select the base that has the higher quality

score over the other. However, the reverse side usually has a

lower quality score, so compensation values must be applied.

B. Analysis of the positional influence

In Fig. 4 no error was observed at the first 17 bases be-

cause we filtered the reads out using the primer. This analysis

shows that the quality score decreases as the base position

moves to the end of read. This is because of Illumina-specific

miscalling features such as cycle-dependent variations of the

cross-talk, declining intensities and phasing [8].

The quality score, only in the case of an error, also

decreases towards the end of read, maintaining the distance

score 19.4 in the whole reads. Thus, if a base of the front

part is miscalled, the quality score may not be the lowest

score but be the proportionally lowest value around the base

position. When we merge and correct the paired-end reads,

we should consider the decreasing feature if the two sides

are highly overlapped.

Fig. 5. Probability of erroneous reads and the error rates of the whole data
according to the average quality score of a read. The bar graph represents
the probability of a erroneous read (PER) and the red line the ratio of the
errors in total (RET). The green line represents the ratio of the error in a
read (RER) and the horizonal bar the distribution of data which have the
same average quality score.

The actual error rates of Illumina reads increase towards

the end of reads, showing a similar distribution to the

proposed secondary polynomial. With this polynomial, we

can expect the error rates if a read has a longer length.

However, the error rates do not form smooth curves, probably

due to the fact that we used a small amount of reference

data. A particular location, which has a higher ratio of

specific bases, seems to produce an effect usually known

as sequence-specific error. However, it is true that the error

rates increase toward the end of reads. If we filter out the

errors by trimming the later part of reads across-the-board,

up to approximately 10% of reads out of the whole (e.g., in

this case from 113 to 125 base positions), we could remove

roughly 29.8% of errors.

C. Quality-score-based read filtering

Fig. 5 shows that the lower the average quality score, the

higher the probability of erroneous reads. The reads which

get quality scores of over 30 points on average have many

errorless reads and have low error counts. Their proportions

are approximately 65% out of the whole. Thus, most reads

have very good quality scores and have few errors. Once the

score of a read is under 20 points, the read has over 90%

probability of being an erroneous read. If we filter out errors

by eliminating the reads that have lowest average quality

score, up to 10% of reads out of the whole (e.g., in this

case from 20 to 0), we could remove about 62.5% of all the

errors.

D. Handling individual bases

Fig. 6 shows that the error probabilities of the bases tend

to increase until the quality score becomes 4. When we focus

on the quality score of 4, the error proportion is very low

(0.001%). However, most of the bases are erroneous (with

67% probability). The quality score of 2 (the lowest value)

gives the highest error rates in total mostly because of the
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TABLE I

COMPARISON OF FILTERING METHODS

Method End trimming Read filtering Base substitution

Filtering criterion Base position Average quality score of a read Quality score of a base

Filtering effect (%) (10% threshold) 29.8 62.5 84.9

Filtering principle Remove end part to the same
length

Remove reads with low average
quality score

Replace bases with low quality
scores by ‘N’.

Remarks Easy to apply but limited filter-
ing effects

Need to examine all the quality
scores for averaging

Handling ‘N’ may cause incon-
venience in downstream analysis

Fig. 6. Probability of erroneous bases and the error rates out of the
whole according to the quality score of a base. The bar graph represents
the probability that a base is an error (PEB) and the line the ratio of the
error in total (RET). The horizontal bar represents the distribution of data,
which have the same quality scores.

error proportion (9.48%). However, the probability is lower

than when the quality score is 4. Whereas most cases with

the quality score 2 (about 89%) are errorless bases, most

cases with the quality score of 4 are erroneous bases.
To minimize the loss of raw data and to maximize the

filtering effect, we should handle the most effective quality

score of 4, or in a wider range (from 10 to 4). If we

filter out the bases that have the lowest quality scores, up

to 10% of bases out of the whole (e.g., in this case from

10 to 0), we could remove roughly 84.9% of the errors.

Unlike end-trimming or eliminating a read, the base can

be handled by substituting the base with ‘N’ because the

error is individually dispersed in the whole length of the

read although most of the errors are located in the end.

V. CONCLUSION

In this paper, we carried out in-depth analysis of Illumina

sequencing data and confirmed that called bases and the as-

sociated quality scores are closely related. We also compared

three types of error handling methods listed in Table 1. Each

technique has its own advantages and disadvantages and

should be selected depending on the specific characteristic

of the data set under experiment.
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