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Abstract² Specific genome copy number alterations, 

such as deletions and amplifications are an important 

factor in tumor development and progression, and are 

also associated with changes in gene expression. By 

combining analyses of gene expression and genome copy 

number we identified genes as candidate biomarkers of 

BC which were validated as prognostic factors of the 

disease progression. These results suggest that the 

proposed combined approach may become a valuable 

method for BC prognosis. 

 

I. INTRODUCTION 

Breast Cancer (BC) is one of the most common cancers 

worldwide, with more than 1,300,000 cases and 450,000 

deaths each year [1]. 

Histologic grading  quantifies the aggressive behavior of a 

tumor classifying breast tumors into grade 1 (G1; well-

differentiated, slow-growing), grade 2 (G2; moderately 

differentiated), and grade 3 (G3; poorly differentiated, highly 

proliferative) malignancies [2]. 

The effects of chromosome copy number changes on gene 

expression levels have remained largely unknown although 

several studies have explored gene expression changes 

occurring in CNA regions [3]. Many studies in this context 

applied a combination of  cDNA and Array comparative 

genomic hybridization (CGH) (to detect CNA) . However, 

SNP array (in this study) offers higher resolution than  CGH 

microarray increasing the ability to detect small CNA [4].   

 CGH microarrays has been used in BC samples to 

identify recurrent genome copy number alterations (CNA) 

between tumors classified according to molecular subtypes, 

such as histological type or receptor expression [5]. The 

identification of CNA in genes that are responsible for gene 

expression regulation is crucial in order to define key genetic 

events leading to malignant transformation and progression 

of disease. By combining gene expression data and copy 
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number data these regulators can be revealed. In a limited 

number of studies [6-8] this approach was adopted for BC 

prognosis. Callagy et al. measured both genome copy 

number and gene expression profiles in 101 primary BC 

samples and found that high-level amplification and/or 

overexpression of genes at 8p11, 11q13, 17q12, and/or 

20q13 were strongly associated with worse prognosis [7].  

Other authors used CGH arrays, and by matching gene 

expression array data showed a significant correlation 

between DNA copy number alterations and mRNA levels 

[8]. 

In our study, we used a combination approach of gene 

expression and copy number alteration to identify possible 

genes able to differentiate the progression of BC disease and 

we identified 49 genes (that had not been detected 

previously).The prognostic power of this combination 

approach was validated in case-control studies by the use of 

a machine learning algorithm compared to existing methods. 

Encouraging results suggest that the proposed approach 

may become a valuable method for BC prognosis. 

II. MATERIALS AND METHODS 

A.  Gene Expression Analysis 

We used two public BC microarray data sets (CEL files) 

from the Gene Expression Omnibus (GEO) database 

(GSE11121, GSE2990) and the dataset used by Foekens et 

al. in [9] (on a collaboration agreement), containing 200, 125 

and 180 samples, respectively, for a total of 505 BC 

microarray data sets.  The datasets came from the same 

Affymetrix GeneChip Human Genome U133A platform. All 

the samples came from lymph-node-negative patients who 

were not subjected to any adjuvant systemic treatment, and 

included both patients without distant metastases and 

patients with distant metastases. 

-Normalization 

Gene expression values were computed from microarray 

data using a Robust Multi-array Average (RMA) method 

[10]. 

-Data merging 

With the purpose to combine the gene expression data 

coming from the three different datasets it was necessary to 

detect and remove the batch effects (experimental variations 

of datasets generated by different laboratories). An Empirical 

Bayes method, Combining Batches of Gene Expression 

Microarray Data (ComBat) was used, and the systematic 

Combination of gene expression and genome copy number alteration 

has a prognostic value for breast cancer 

C. Cava, I. Zoppis, G. Mauri, M. Ripamonti, F. Gallivanone, C. Salvatore,  

M. C. Gilardi and I. Castiglioni  

 

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 608



  

difference of differently normalized data generated by the 

three different laboratories were adjusted [11].  

-Identification of up/down regulated genes 

We selected two groups of patients from the gene 

expression dataset (505 samples): 394 patients without 

distant metastases (class A) and 111 patients with distant 

metastases (class B). Our aim was in fact to select significant 

genes based on differential expression between these two 

classes of samples.  

To discover associations between gene expression and the 

presence/absence of metastasis, a Significance Analysis of 

Microarray (SAM) was used [12]. SAM identifies 

statistically significant genes by carrying out gene specific t-

tests and computes a statistic measure for each gene, which 

represents the strength of the relationship between the gene 

expression and a response variable (e.g. false discovery rate, 

FDR). More specifically, as a first step, a SAM analysis was 

used to obtain DNA probes discriminating between the two 

classes of interest. The genes were considered up/down-

regulated if their mean expression in class B were 

significantly higher/lower (FDR, q value <0.01) than in class 

A. In a second step, the genes, as found up or down 

regulated in expression, were identified by submitting IDs 

probes from the HGU133Array to Affymetrix through the 

Netaffxtool (www.affymetrix.com/analysis/index.affx). 

B. Copy Number Analysis 

We used one public BC SNP array data sets (raw and 

normalized CEL files) from the GEO database (GSE7545) 

containing 51 samples. All the samples include both patients 

without distant metastases and patients with distant 

metastases. 

-Normalization 

Affymetrix 500K Mapping Array intensity signal CEL 

files were processed by dChip 2005 (Build date Nov 30, 

2005) using the PM/MM difference model and an invariant 

set normalization.  

-Identification of copy number gain/losses 

We used Copy Number Analyser for GeneChip (CNAG) 

[13] to identify the chromosomal regions with gains and 

losses of DNA.  

C. Combination of gene expression and genome copy 

number alteration (Venn analysis) 

Two different combined analysis were performed: (a) up 

regulated genes versus copy number gains, and (b) down 

regulated genes versus copy number losses.  

Figure 1 gives a simple representation of the proposed 

combined methodology.   

 
Figure 1. Representation of the proposed combined methodology 

 

D. Validation 

To evaluate the performance of the proposed approach 

based on  the combination of gene expression and CNA, we 

used a machine learning algorithm, trained on the identified 

up-regulated genes and tested on the ability to differentiate 

progression of BC samples with respect to the up regulation 

of these genes.  We used the mean expression value of each 

gene (up-regulated) from the probes. 

For this purpose we used published microarray expression 

BC datasets (CEL files) from the Gene Expression Omnibus 

(GEO) database (GSE7390 and GSE6532). 

Desmedt et al. [14] (GSE7390) validated 76 gene 

prognostic signature to predict distant metastases and to 

compare the outcome with clinical risk assessment. They 

observed a strong time dependence of this signature for time 

to distant metastasis (TDM)  and overall survival. curves.  

Loi et al. [15] (GSE6532) reported PIK3CA mutation±

associated gene signature (PIK3CA-GS) and found a 

relationship with clinical outcome.  PIK3CA-GS could 

identify better clinical outcomes in ER+/HER2- disease. 

All the samples came from lymph-node-negative patients 

who were not subjected to any adjuvant systemic treatment. 

From the first dataset (GSE7390) 3 classes were obtained 

as follows: 30 grade I patients (class GI), 83 grade II patients 

(class GII) and 83 grade III patients (class GIII), considering 

histological grade has prognostic factor [e.g. 16]. 

The second dataset (GSE6532) was selected as follows: 

112 tumors of lymph-node-negative patients, 34 patients 

with grade I, 49 with grade II and 29 with grade III.  

-Normalization 

Expression values from Affymetrix GeneChip Human 

Genome U133A platform were calculated using the 

Affymetrix GeneChip analysis software MAS 5.0 (for 

GSE7390)  and  the standard quantile normalization method 

in RMA (for GSE6532).  

-Machine learning 

To evaluate the performances of proposed approach we 

designed a Rapid Miner (RM) workflow (WF) [17]. RM is a 

software environment for rapid prototyping of machine 
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learning processes. It is currently used for classification, 

clustering, and also data integration tasks e.g., [18]. 

The RM workflow designed for our evaluation implements 

standard Support Vector Machine (SVM) algorithms to 

forecast the patient  grade.  The main issues of this workflow 

are characterized by the following processes: 

a) SVM Parameter Optimization. We iteratively changed 

SVM parameters to optimize its performance. This was 

performed by a cross validation process, which in turn 

trained and tested the SVM algorithm. we optimized the 

inference accuracy over a space of given SVM feasible 

learning parameters .The following values are used. kernel.�: 

from 0 to 5, step 30; kernel.C: from 0 to 5, step 30; 

kernel.type Ð {ANOVA, NEURAL, RADIAL}. 

b) Cross Validation. The SVM was validated by a two-step 

process based on a k-fold cross-validation process: in the 

¿UVW�VWHS�D�FODVVL¿HU�LV�EXLOW�GHVFULELQJ�D�SUHGHWHUPLQHG�VHW�RI�

data classes. In the second step, the model (a trained SVM) 

is used for testing new cODVVL¿FDWLRQ� H[DPSOHV�� WKH�

generalization performance oI� WKH� FODVVL¿HU� LV� HVWLPDWHG�

using a new test set. 

Figure 2 shows the RM-WF designed for our evaluation. 

The performance of the classification was obtained in terms 

of Sensitivity, Specificity, Positive Predictive Value (PPV), 

Negative Predictive Values (NPV), Accuracy for the 

following case-control study: GI (control group) vs GII (case 

group),  GI (control group) vs GIII(case group) and GII 

(control group) vs GIII (case group). 

 

 

Figure 2. Data Source Operator UHDGV�GDWD�IURP�¿OHV��reporting patient 

representation instances). Parameter Optimization Operator assigns a set 

of de¿ned values to the learning parameters and performs the inner 

operators for all possible combinations of them. Cross Validation 

Operator encapsulates a n-fold cross validation process: the input data set 

S is split up into subsets {S1,S2,...,Sn}. The inner operators are applied n 

times using at each iteration i the set Si as test and S\Si as training set. 

SVM Operator implements a Support Vector Machine algorithm  to 

deliver an inference model. Model Applier Operator applies the model 

delivered by the SVM operator. Finally, Performance Operator collects 

the performance evaluation RI�WKH�FODVVL¿FDWLRQ�WDVN�DQG�RXWSXWV�

performance measures.  

III. RESULTS 

A.  Gene Expression Analysis 

RMA provided approximately 22.000 probes. Among 

these genes, 253 were identified with up (193) or down (60) 

regulation in expression, by the comparison of BC samples 

of patients without distant metastases (class A) and BC 

samples of patients with distant metastases (class B). 

B. Copy Number Analysis 

Copy number gains were frequently observed within 

regions 1q, 8q, 17q and 20, copy number losses were 

frequently observed within regions 13q, 1p, and 3. Our 

findings were consistent with published cytogenetic studies 

[e.g. 19].  

C. Combination of gene expression and genome copy 

number alteration (Venn analysis) 

A low  number (<10) of down-regulated genes and copy 

number losses was found. 

Forty-nine up-regulated genes and copy number gains 

were found. The list of these genes is shown in table I. All 

genes have functional annotations that could be directly 

linked with cancer.  

By using biological pathway-based analysis  Reactome  we 

determined  whether 49 up amplified genes are enriched for 

a particular pathway.  

Most part of these genes are implicated in development and 

progression of BC, e.g. 

- Cell cycle (p-value= 3.6e-21) 

- Mitotic M-M/G1 phase (p-value= 3.8e-12) 

- Phosphorylation of Gorasp1, Golga2 and RAB1A by     

  CDK1-CCNB (p-value= 3.6e-06) 

- CDK1 phosphrylates Mastl ( p-value=5.0e-05) 

TABLE I.  GENES AND THEIR POSITION 

Gene Position Gene Position 

NEK2 1q32.3 BUB1 2q13 

CCNE2 8q22.1 CCNA2 4q27 

ASPM 1q31.3 CCNB1 5q13.2 

VAPB 20q13.32 CCNB2 15q22.2 

TTC13 1q42.2 CENPE 4q24 

RAE1 20q13.31 HMMR 5q34 

TAF5L 1q42.13 LHX2 9q33.3 

DDX27 20q13.13 MSH6 2p16.3 

BIRC5 17q25.3 CBX5 12q13.13 

RBL1 20q11.23 ENC1 5q13.2 

SKP2 5p13.2 GTSE1 22q13.31 

TPX2 20q11.21 NEIL3 4q34.3 

KIF14 1q32.1 ORC6 16q11.2 

RRM2 2p25.1 ZWINT 10q21.1 

BRD2 6p21.32 SMC4 3q25.33 

CMC2 16q23.2 CDK1 10q21.2 

RSRC1 3q25.32 KIF23 15q23 

SPC25 2q31.1 TTK 6q14.1 

CDC20 1p34.2 EZH2 7q36.1 

CDKN3 14q22.2 KIFC1 6p21.32 

E2F3 6p22.3 MELK 9p13.2 

ECT2 3q26.31 PTTG1 5q33.3 

FXR1 3q26.33 RFC4 3q27.3 
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SENP5 3q29 SOX4 6p22.3 

RAD1 5p13.2   

 

D. Validation 

Results of Sensitivity, Specificity, PPV, NPV, and 

Accuracy of the SVM classification are shown in Table II 

(GSE7390) and Table III (GSE6532), respectively, for the 

considered case-control study: GI vs GII,  GI vs GIII and GII 

vs GIII. The prognostic power of this combination approach 

(Comb) was compared to SAM methods. The principal 

component analysis (PCA) was used for reducing the 

dimension of SAM genes. 

TABLE II.  CLASSIFICATION PERFORMANCE (GSE7390) 

 GI vs GII GI vs GIII GII vs GIII 

 SAM Comb SAM Comb SAM Comb 

Sensitivity 100.00% 91.57% 89.16% 85.54% 71.08% 85.54% 

Specificity 6.67% 50.00% 56.67% 83.33% 79.52% 79.52% 

PPV 74.77% 83.52% 85.06% 93.42% 77.63% 80.68% 

NPV 100.00% 68.18% 65.38% 67.57% 73.33% 84.62% 

Accuracy 75.23% 80.56% 80.49% 84.95% 75.32% 81.33% 

TABLE III.  CLASSIFICATION PERFORMANCE (GSE6532) 

 GI vs GII GI vs GIII GII vs GIII 

 SAM Comb SAM Comb SAM Comb 

Sensitivity 91.84% 83.67% 86.21% 93.10% 51.72% 72.41% 

Specificity 44.12% 50.00% 88.24% 88.24% 89.80% 89.80% 

PPV 70.31% 70.69% 86.21% 87.10% 75.00% 80.77% 

NPV 78.95% 68.00% 88.24% 93.75% 75.86% 84.62% 

Accuracy 72.22% 69.89% 87.30% 90.48% 75.64% 83.33% 

 

First we notice that GI vs GIII has a better behaviour  

providing the ability of the proposed combined approach in 

differentiating low  (GI) and high grade (GIII) BC tumors 

(GSE7390 accuracy: 84.95% PPV: 93.42%, GSE6532 

accuracy: 90.48%  NPV: 93.75%). On the contrary, GI vs 

GII reports the worst behavior (GSE7390 accuracy: 80.56%, 

specifity: 50% GSE6532 accuracy: 69.89% specifity: 50%), 

anyway accuracy values  are always greater than or equal 

70%.  We notice an overall judgment that the indexes are 

clearly better for our methodology (Comb). GI vs GII with 

Comb (GSE7390: 50%) balances better the specifity of SAM 

(6.67%). GI vs GII (GSE6532) reports the worst behavior 

with Comb but the accuracy values are similar ( Comb: 

69.89%, SAM: 72.22%).This suggests that the proposed 

approach may become a valuable method for BC prognosis. 

IV. CONCLUSIONS 

In this study, we performed a genome-wide analysis of 

genome copy number and gene expression changes in BC to 

identify genes whose expression were deregulated due to 

altered copy number. We obtained 49 genes as potential 

molecular BC markers with biological roles in the 

development and progression of BC. This suggests evidence 

of a candidate oncogene role in tumorigenesis. The effects of 

these copy number changes on gene expression levels have 

been largely unknown and we have demonstrated that a 

classification analysis, concerning the disease progression as 

characterized by progression  markers (e.g. grade), shows 

high performance when using a combination of CNA-based 

information and gene expression.  
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