
Optimisation algorithms for microarray biclustering

Dimitri Perrin? and Christophe Duhamel†

Abstract— In providing simultaneous information on expres-
sion profiles for thousands of genes, microarray technologies
have, in recent years, been largely used to investigate mecha-
nisms of gene expression. Clustering and classification of such
data can, indeed, highlight patterns and provide insight on
biological processes. A common approach is to consider genes
and samples of microarray datasets as nodes in a bipartite
graphs, where edges are weighted e.g. based on the expression
levels. In this paper, using a previously-evaluated weighting
scheme, we focus on search algorithms and evaluate, in the
context of biclustering, several variations of Genetic Algorithms.
We also introduce a new heuristic “Propagate”, which consists
in recursively evaluating neighbour solutions with one more
or one less active conditions. The results obtained on three
well-known datasets show that, for a given weighting scheme,
optimal or near-optimal solutions can be identified.

I. INTRODUCTION

The mechanisms leading to the development of the phe-
notype form a very complex biological system, that involves
interactions between a large number of genes. Common
techniques used to study gene expression mechanisms in-
clude microarrays and related analysis techniques. These
are used for large-scale transcriptional profiling, measuring
expression levels of thousands of genes at the same time. By
understanding gene expression, further insight can be gained
into cell function and cell pathology [18].

Several analysis techniques have been developed, (see e.g.
[15] for a general review), and a number are variations of the
concept of clustering. The idea is to group genes, based on
their expression under multiple conditions (or over different
time-points) or, conversely, to group conditions according to
expression of several genes [13], [14].

Biclustering was introduced, by [4], as the simultaneous
clustering of both genes and conditions. The authors identi-
fied three advantages over traditional clustering:

• Better at selecting genes and conditions with coherent
measurement and dropping those representing noise.

• Grouping based on similarity in the context of the subset
of conditions. Biclustering, therefore, discovers both
grouping and context, a result more advanced than that
obtained from successive clustering of rows and then
columns separately.

• Biclustering allows genes and conditions to be part
of multiple biclusters, i.e. be identified by more than

?D. Perrin is with the Laboratory for Systems Biology, RIKEN Center
for Developmental Biology, Kobe, Japan, and with the Centre for Scien-
tific Computing and Complex Systems Modelling, Dublin City University,
Dublin, Ireland. dperrin at cdb.riken.jp

†C. Duhamel is with LIMOS, CNRS UMR 6158, Université Blaise
Pascal, Clermont-Ferrand, France. duhamel at isima.fr

one functional category. This is reflective of actual
functionality of genes.

These authors also considered the complexity of the prob-
lem, later shown to be NP-complete [12].

Several categories of biclustering algorithms coexist, and
vary as to type of biclusters achieved. While some look for
biclusters with constant values on rows and/or columns, (see
e.g. [1]), it was highlighted by [10] that more advanced,
improved algorithms locate biclusters with coherent values
[20] or coherent evolution [8]. This latter category is very
interesting: biclusters are formed irrespective of the exact
expression values, but rather by looking at evidence that
a group of genes show similar expression patterns over a
number of conditions, (see e.g. [16]).

However, analysis methods for gene expression microar-
rays, even though widely used, often lack formal validation
and evaluation, either as a whole (as outlined in [17]), or
even of their main components. In particular, these tech-
niques rely heavily on weighting schemes which, given their
importance, are surprisingly rarely analysed. This is also true
for algorithms underpinning the analysis, yet most are said
to perform “reasonably”. This presents difficulties in terms
of meaningful evaluation and attempted improvements. We
focus here on the analysis techniques, and use a weighting
that has been previously described and assessed [7]. In
particular, we evaluate the performances of a parallel genetic
algorithm (PGA) and of a new heuristic (“Propagate”).

II. MATHEMATICAL MODEL

In this study, we consider data from the gene expression
matrix as bipartite graph. Two sets of nodes represent genes
and experimental conditions, respectively. Edges are limited
to connecting these two sets, hence the bipartite structure.
It is a complete bipartite graph (or biclique), since there is
an edge linking any pair of gene-condition. In this context,
a bicluster is a subgraph which conserves the biclique
structure. In other words, the proposed algorithm will look
for bicliques with minimum total weight (see Figure 1).

Let cij be the weight of the edge between gene i under
condition j, (with value based on expression data stored in
the matrix). As explained in the introduction, we focus on
this paper on the evaluation of the optimisation methods. The
weights are therefore considered as inputs, and are not part of
the analysis. For a detailed description and evaluation of the
distribution-based scheme used in our tests, we refer readers
to the corresponding article [7]. In brief, a negative weight
indicates an expression level for gene i under condition j
that differs notably from the “average” expression observed
for this gene across all conditions, as well as from what

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 592

genes

conditions

Fig. 1: A biclique with 3 genes and 2 conditions in a
complete bipartite graph with 6 genes and 5 conditions

is observed for the majority of genes for condition j. This
weighting scheme was shown to perform well on the main
properties desirable for subsequent search algorithms, such
as discrimination, reusability and robustness.

Let yi (respectively yj) be the boolean variable defining
whether gene i (resp. condition j) belongs to the biclique.
Thus the product yiyj states whether the edge {i, j} is con-
sidered in the solution or not, and the biclustering problem
is mathematically defined by Equation 1.{

Minimise
∑
i,j

cijyiyj

s.t. yi, yj ∈ {0, 1} ∀i, j
(1)

This formulation is quadratic since it involves products of
variables xij = yiyj . We propose the following linearisation:

• xij ≤ yi: an edge {i, j} can not be included in the
biclique if the gene i is not included.

• xij ≤ yj : an edge {i, j} can not be included in the
biclique if the condition j is not included.

• xij ≥ yi + yj − 1: if a gene i and a condition j are
included in the biclique, then the edge {i, j} is also
included.

• xij ≥ 0.
The linearised version of the biclustering problem is

therefore given by Equation 2.

Minimise

∑
i,j

cijxij

s.t. (linear description) ∀i, j
yi, yj ∈ {0, 1} ∀i, j

(2)

Since this problem is NP-hard, these formulations cannot
be used as is for large microarrays: heuristics are required.

III. HEURISTICS

A. Greedy heuristic

We propose a new search heuristic. Given a current
solution s with k active conditions, the “Propagate” heuristic
performs two moves:

1) the promotion, which considers all inactive conditions
and finds the best one to include in the bicluster, to
obtain a solution with k + 1 active conditions.

2) the demotion, which considers all active conditions
and finds the best one to remove from the bicluster,
to obtain a solution with k − 1 active conditions.

p

r

m

m

m

m

Fig. 2: Coarse-grained, stepping stone structure. Before a
migration step, each subpopulation is sorted. Then, m so-
lutions are selected those ranked below threshold r, and
are sent clockwise. Similarly, m solutions are selected from
those ranked above threshold p, and are sent anti-clockwise.
Finally, new solutions are received: m good solutions arrive
clockwise, and m poor solutions arrive anti-clockwise.

These two moves are used recursively, starting with the
“empty” solution and the “complete” solution respectively.
The recursion occurs every time an improving solution is
found for its number of active conditions (k − 1 or k + 1).
The heuristic returns the best bicluster it generated for each
number of active conditions.

B. Genetic algorithm

Genetic algorithms are loosely based on mutations in
nature and how these lead to biological evolution through
survival of the fittest elements only [6]. They have been
extensively used in the context of biological applications. For
microarray biclustering in particular, there have also been
some attempts at developing genetic algorithms (e.g. [3],
[11]), but assessment of these implementations is limited.

The proposed architecture is coarse-grained parallelisation
based on the stepping stone model [2]. For migrations, each
subpopulation is sorted according to the total weight of the
encoded bicluster, and two thresholds are used to define
the “rich” and “poor” areas, (which contains the solutions
with the lowest and highest total weights, respectively). A
bidirectional ring is then used to send solutions selected
from these two areas, as shown in Figure 2. Based on this
parallel structure, the local genetic algorithm is developed,
and detailed in what follows.

Encoding the solution
Given the objective function defined in Equation 2, a naive
solution would be to use edge presence in the solution
bicluster as a Boolean variable or, following Equation 1,
to have an array encoding presence of both genes and
conditions in the solution bicluster. Besides consuming a
lot of memory, these encodings suffer from issues such
as requirement for a “repair” function and a bias towards
the modifications on the genes rather than the conditions.
However, explicitly encoding genes is not necessary. Once
a subset of conditions is chosen, interesting biclusters only
involve genes for which the total weight over the selected
conditions is negative. It is, therefore, possible to perform
biclustering while explicitly encoding only a small part of

593

the bicluster. An interesting property is that any subset of
conditions corresponds to a feasible solution. Thus, no repair
function is needed.

Evolution operators
Evolution operators are used to introduce new solutions
obtained through small variations of existing ones. We first
use the mutation: a solution is randomly chosen, and one of
its boolean variables is altered. The uniform mutation is also
implemented: a solution s is randomly chosen and a random
boolean array u of same length is created. A new solution
is then obtained by keeping the value of a boolean variable
s[i] when u[i] is equal to 1, and altering it otherwise.

The crossover operators work on two existing solutions.
In our algorithm, one is selected a uniform probability an
the other one must belong the best 10% solutions. Once the
two solutions are chosen, a cutting point is selected in the
solution array, using a uniform probability, and the solutions
exchange the variables located after that point. A variant
exists where two cutting points are chosen, and solutions
exchange variables located between those two points.

Selection
A typical iteration of a genetic algorithm includes the cre-
ation of new solutions, (i.e. the “expansion phase”), followed
by the evaluation of population and selection of solutions that
will be conserved for the next iteration, the remainder being
eliminated, (i.e. the “selection phase”).

We propose a hybrid approach: the n/2 best solutions are
conserved, while the others are involved in ‘tournaments”
until we obtain a population of size 9n/10. Population is
then restored to n by introducing new solutions. Each of
these is obtained as follows: (i) for each condition j, we
count kj , the number of times it appears in the N current
solutions; (ii) we generate random numbers rj , uniformly
in [0, N]; (iii) condition j is included in the new solution
if and only if rj > kj . In other words, the probability to
include condition j is inversely proportional to its current
representation, and this improves the diversity in the overall
population.

IV. EXPERIMENTAL EVALUATION

The approaches presented here are tested on the same
datasets used for validation of the weighting scheme [7].
These include: (i) the Yeast Cell Cycle Data (YCC) dataset
[21], which contains time-course expression profiles for more
than 6000 genes, with 17 time points for each gene; (ii) a
Lymphoma (L) dataset [9], which relates to an experiment
to characterise gene expression in Diffuse Large B-cell
lymphoma and contains expression levels for 4026 genes and
96 samples; (iii) a Gefitinib Treated Kasumi Cell Line (KCL)
dataset [5], which includes 22283 genes and 10 samples.

Evaluation is first done on the smaller datasets, KCL
(m = 10 conditions) and YCC (m = 17 conditions), and
looks at the results obtained from the enumeration method
(enum), the genetic algorithm (both sequential (GA) and
parallel (PGA)) and the Propagate heuristic (H). Results
are not detailed for KCL: the dataset is small enough that
all methods find the optimal solutions. Table I summarises

results for the YCC dataset: optimal values are reported for
the enumeration method while the relative gap to the optimal
value is given for the other methods.

Clearly, the parallel genetic algorithm and the heuristic
method are performing well. They identify optimal solutions
in all cases, with only one exception for the latter. To further
highlight the superiority of the parallel genetic algorithm
over its sequential counterpart, it is useful to look at the
frequency at which the optimal solution is identified. On
the YCC dataset, the latter finds each optimal solution in
at least 10% of all runs, but less than half of them are
always identified. The parallel implementation, with a similar
computation time, finds the best solutions every time.

cond. enum. GA PGA H
1 -428,719 0% 0% 0%
2 -286,690 0% 0% 14%
3 -191,437 0% 0% 0%
4 -150,401 0% 0% 0%
5 -137,360 26% 0% 0%
6 -111,790 26% 0% 0%
7 -89,911 10% 0% 0%
8 -76,047 < 1% 0% 0%
9 -74,763 9% 0% 0%
10 -77,856 20% 0% 0%
11 -77,651 15% 0% 0%
12 -73,878 43% 0% 0%
13 -68,084 39% 0% 0%
14 -43,350 0% 0% 0%
15 -27,093 0% 0% 0%
16 -12,432 0% 0% 0%
17 -7,665 0% 0% 0%

TABLE I: Results on the YCC dataset. For each bicluster size
(in number of conditions), we give the score of the optimal
solution obtained by exact enumeration, and the gap between
this score and the scores of the solutions obtained using the
three methods (GA, PGA, H).

For the largest dataset (L with m = 96 conditions), the
enumeration method cannot be applied anymore. Thus, the
results from our methods cannot be compared to the optimal
values. The parallel genetic algorithm has been shown to
dominate the sequential version, and it is kept. We propose
an improvement in which a local search based on add/drop
moves is applied on some randomly selected solutions. It
is called Hybrid algorithm. The solution profiles obtained
with the parallel genetic algorithm (Standard Algorithm),
our heuristic (Heuristic Method) and the hybrid algorithm
(Hybrid Algorithm) are shown on Figure 3. A single run of
the hybrid algorithm significantly outperforms the standard
parallel genetic algorithm overall, and the heuristic method
in a specific region (low bicluster sizes) and obtains results
similar to that of this method elsewhere.

Interestingly, the profile obtained by the hybrid algorithm
is largely conserved over multiple runs: 71 biclusters, (out
of 96), are obtained at each run and 18 of the remaining 25
have a standard deviation smaller than 10% of the average
solution obtained. The latter ones correspond to non-optimal
low-energy solutions in which the algorithm gets “trapped”.
Overall, these results suggest that most of the solutions

594

identified are optimal, or at least nearly-optimal, for their
respective bicluster size.

−700000

−600000

−500000

−400000

−300000

−200000

−100000

 0

 0 10 20 30 40 50 60 70 80 90

B
ic

lu
s
te

r
w

e
ig

h
t

Bicluster size (number of conditions)

Hybrid Algorithm
Standard Algorithm

Heuristic Method

Fig. 3: Solution profile on the Lymphoma dataset.

V. CONCLUSION

In this article, we considered the problem of identify-
ing meaningful information from large microarray datasets.
Given a robust weighting scheme proposed in [7], we mod-
elled the problem as a biclustering problem for which we
proposed a propagation heuristic and several variations of
a genetic algorithm. The original version of the genetic
algorithm is first parallelised, and later hybridised with a
local search as an additional mutation operator.

The results obtained on three classic instances illustrate
the effectiveness of our approaches. For a given weighting
scheme, optimal solutions are identified, especially with the
hybridised parallel genetic algorithm.

Additional experiments have shown results of the hybrid
genetic algorithm are also robust, i.e. optimal solutions ap-
pear in successive runs despite the method being stochastic.

The biological significance of the solution depends on the
weighting scheme, and is therefore outside the scope of this
paper, but analysis of the clusters confirmed they contained
genes involved in the same functions. The combination of the
weighting scheme and the optimisation techniques performs
as expected.

Future analysis may investigate the stability of the pro-
posed methods, (e.g. verifying the robustness of the clusters
with an hold-out schema). Future work may also include
comparison with feature reduction methods, (either prior to,
or combined with, clustering).

For the largest dataset, solutions are obtained in only five
minutes using a standard cluster and the parallel approach
with eight islands. The approach is therefore useful not
only for microarray analysis but also for larger datasets,
biological (e.g. next-generation sequencing) or otherwise.
Provided meaningful weighting schemes can be designed,
it may also be possible to extend the approach to problems
involving multiple datatypes. Such integrative methods have
for instance proved very useful in looking at data across
species [19].

ACKNOWLEDGMENTS

The parallel implementations discussed in this paper were
tested in-house on the cluster made available by the Centre
for Scientific Computing & Complex Systems Modelling,
Dublin City University.

Financial support from the Irish Research Council for
Science, Engineering and Technology (IRCSET), co-funded
by Marie Curie Actions under FP7, and subsequently from
the RIKEN Foreign Postdoctoral Researcher Program, is
warmly acknowledged (DP).

REFERENCES

[1] S. Busygin, G. Jacobsen, and E. Kramer. Double conjugated clustering
applied to leukemia microarray data. In Proceedings of the 2nd SIAM
International Conference on Data Mining, Workshop on Clustering
High Dimensional Data, 2002.

[2] E. Cantu-Paz. A summary of research on parallel genetic algorithms.
IlliGAL report 95007, University of Illinois (IL), 1995.

[3] A. Chakraborty and H. Maka. Biclustering of gene expression data
using genetic algorithm. In Proceedings of the 2005 IEEE Symposium
on Computational Intelligence in Bioinformatics and Computational
Biology, 2005.

[4] Y. Cheng and G. M. Church. Biclustering of expression data. In
Proceedings of the 8th International Conference on Intelligent Systems
for Molecular Biology (ISMB 2000), volume 8, San Diego, California,
USA, August 2000.

[5] Gefitinib Treated Kasumi Cell Line Dataset, MIT Broad Institute.
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.

[6] J. H. Holland. Adaptation in natural and artificial systems. MIT Press,
1975.

[7] G. Kerr, D. Perrin, H. J. Ruskin, and M. Crane. Edge weighting of
gene expression graphs. Advances in Complex Systems, 13(2), 2008.

[8] J. Liu and W. Wang. OP-cluster: clustering by tendency in high
dimensional space. In Proceedings of the 3rd IEEE International
Conference on Data Mining, pages 187–194, 2003.

[9] Lymphoma/Leukemia Molecular Profiling Project Gateway.
http://llmpp.nih.gov/lymphoma/.

[10] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biologi-
cal data analysis: a survey. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 1(1):24–45, 2004.

[11] S. Mitra and H. Banka. Multi-objective evolutionary biclustering of
gene expression data. Pattern Recognition, 39(2006):2464–2477, 2006.

[12] R. Peeters. The maximum edge biclique problem is NP-complete.
Discrete Applied Mathematics, 131(3):651–654, 2003.

[13] S. Raychaudhuri, P. D. Sutphin, J. T. Chang, and R. B. Altman.
Basic microarray analysis: grouping and feature reduction. Trends
in Biotechnology, 19:189–193, 2001.

[14] D. K. Slonim. From patterns to pathways: gene expression data
analysis comes of age. Nature Genetics, 32:502–508, 2002.

[15] G. Stolovitzky. Gene selection in microarray data: the elephant, the
blind men and our algorithms. Current Opinion in Structural Biology,
13:370–376, 2003.

[16] A. Tanay, R. Sharan, and R. Shamir. Discovering statistically sig-
nificant biclusters in gene expression data. Bioinformatics, 18(Suppl.
1):S136–S144, 2002.

[17] H. Turner, T. Bailey, and W. Krzanowski. Improved biclustering of
microarray data demonstrated through systematic performance tests.
Computational Statistics and Data Analysis, 48(2005):235–254, 2005.

[18] F. Valafar. Pattern recognition techniques in microarray data analysis:
A survey. Annals of the New-York Academy of Sciences, 980(1):41–64,
2002.

[19] P. Waltman, T. Kacmarczyk, A. R. Bate, D. B. Kearns, D. J. Reiss,
P. Eichenberger, and R. Bonneau. Multi-species integrative bicluster-
ing. Genome Biology, 11:R96, 2010.

[20] H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering by pattern
similarity in large data sets. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, pages 394–405,
2002.

[21] Yeast Cell Cycle, available from R.W. Davis’ website at Stanford.
http://genomics.stanford.edu/yeast cell cycle/cellcycle.html.

595

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

