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Abstract— Advances in DNA information extraction tech-
niques have led to huge sequenced genomes from organisms
spanning the tree of life. This increasing amount of genomic
information requires tools for comparison of the nucleotide
sequences. In this paper, we propose a novel nucleotide sequence
alignment method based on sparse coding and belief propaga-
tion to compare the similarity of the nucleotide sequences. We
used the neighbors of each nucleotide as features, and then we
employed sparse coding to find a set of candidate nucleotides. To
select optimum matches, belief propagation was subsequently
applied to these candidate nucleotides. Experimental results
show that the proposed approach is able to robustly align
nucleotide sequences and is competitive to SOAPaligner [1] and
BWA [2].

I. INTRODUCTION

The latest sequencing technologies have generated nu-
merous sequenced genomes for various species. This in-
creasing volume of data requires tools that can accurately
compare multiple genome sequences to aid in the study
of populations, pan-genomes, and genome evolution [1],
[2]. For a particular study, many individual genomes may
be sequenced to investigate genetic diversity. For example,
the Cancer Genome Atlas [3] and 1000 Genomes Project
[4] will generate genome sequences from several thousand
people. The complete bacterial genomes in public databases
are already over one thousand. To better utilize this huge
amount of sequenced genome information, many tools have
been developed that are capable of efficiently finding similar
sequences from whole genomes. Whole genome sequence
alignment are used for studying genome evolution and
genetic diversity [5], [6]. For example, Blanchette et al.,
defined a Threaded Blockset Aligner (TBA) and built a
threaded blockset under the assumption that all matching
segments occur in the same order and orientation in a given
sequence [7]. TBA was designed for aligning megabase-sized
regions of multiple mammalian genomes. Darling et al. [8]
implemented a method for identification and alignment of
conserved genomic DNA in the presence of rearrangements
and horizontal transfer called Mauve. Mauve has been ap-
plied to align nine enterobacterial genomes and to determine
global rearrangement structure in three mammalian genomes.
There are other whole-genome alignment tools that can align
multiple whole genomes such as [9]–[11].
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Whole-genome alignment tools are classified from
collinear multiple sequence alignment tools, such as tools
in [12]–[14] where they can align very long sequences
and detect the presence of rearrangements, duplications, and
large-scale sequence gains and losses. For example, Bradley
et al., in [12] proposed a program for the alignment of
multiple biological sequences that is statistically motivated
and fast for practical size problems. It was based on pair hid-
den Markov models which approximate an insertion/deletion
process on a tree and used a sequence annealing algorithm
to combine the posterior probabilities estimated from these
models into a multiple alignment. Edgar et al. proposed
another alignment tool named MUSCLE which is a program
for creating multiple alignments of protein sequences [13].
Elements of the algorithm include fast distance estimation
using k-mer counting, progressive alignment using a log-
expectation score, and refinement using tree-dependent re-
stricted partitioning. In spite of collinear alignment technolo-
gies, non-collinear alignment such as [15], [16] contains the
elements that are arranged in some non-linear order (see Fig.
I.1).

(a) Collinear (b) Non-collinear

Fig. I.1: Collinear vs. Non–collinear nucleotide sequence align-
ment.

In this paper, we propose a novel alignment technique
using sparse coding and belief propagation. First, we build an
overcomplete dictionary out of extracted nucleotide features
of a reference sequence. We then find a set of candidate
nucleotide for each nucleotide of the test sequence using
sparse coding from the constructed dictionary. The match
score of each candidate nucleotide will be evaluated taking
both local and neighboring information into account using
belief propagation. The best match will be selected as the
candidate with the highest score. The rest of this paper is
structured as follows. Section II introduces our proposed
method. In Section III, we show and discuss our simulation
results and compare them with SOAPaligner [1] and BWA
[2], followed by a brief conclusion in Section IV.

II. PROPOSED METHOD

The proposed method described here is inspired by our
recent work, SCoBeP [17]. First, we map the reference
nucleotide sequence X of size N and the test nucleotide
sequence Y of size M into the two integer sequences,
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Fig. II.1: Sparse representation of a feature vector yi with a
dictionary D : α̂i as a sparse vector constructs the feature vector
yi using a few columns (highlighted in gray) of dictionary D.

X and Y, respectively. We then extract the features from
the reference sequence X ∈ ZN×2 and the test sequence
Y ∈ ZM×2.

Second, we create a dictionary D containing all the ex-
tracted feature vectors of the reference sequence X to match
to the corresponding extracted features of the test sequence
Y. The dictionary includes all vectorized one dimensional
features as its columns where all of them have been normal-
ized. We then apply sparse coding to each extracted feature of
the test sequence. Sparse coding will reconstruct a nucleotide
vector at each nucleotide gi as a linear combination of the
reference sequences. Note that the obtained representation
coefficients αi should be sparse, i.e., it should be 0 for
most coefficients. The non-zero coefficients of αi indicate
the corresponding nucleotides on the reference sequence (see
Fig. II.1).

To select n candidate nucleotides, we simply pick those
corresponding to n largest coefficients in the sparse co-
efficient vector. We store the locations of these candidate
nucleotides in a length-n vector Li and a probability vector
ρi as a length-n vector storing the corresponding proba-
bilities of the sparse coefficient vector. Each coefficient in
the probability vector ρi serves as a prior probability of
matching the nucleotide at i to a nucleotide of reference
sequence. This probability vector takes only local character-
istics into account but ignores neighborhood characteristics
of the matches.

Finally, we expect that nearby nucleotides in the test
sequence should also match the nucleotides that are close
to each other in the reference sequence. To incorporate these
neighborhood characteristics, we model the problem by a
factor graph and apply the Belief Propagation (BP) algorithm
to identify the best matches. We consider a one dimensional
factor graph as follows: for each nucleotide in the test
sequence, one variable node was assigned and each variable
node was connected to its two neighbors by a factor node.
Also, we consider one extra factor node for each variable
node to impose the restriction of prior probabilities for the
candidate nucleotides (see Fig. III.1).

BP [18] is an efficient inference method used on graphical
models such as factor graphs. It was performed by passing

Variable Node    

Factor Node     

Factor node (Prior)    

Fig. II.2: Nucleotides model: One dimensional factor graph used
in Belief Propagation.

messages through the factor graph of our problem. We apply
BP on the factor graph of test sequence with n candidate
nucleotides as prior knowledge. BP updates the probability
of candidate nucleotides based on the probabilities of their
neighbors.

Define N(i) and N(a) as two sets of neighbors of a
variable node i and a factor node a, respectively, and denote
mi→a and ma→i as the forward and backward messages
from node i to node a, respectively. Message updates for
mi→a and ma→i are based on the messages received by
the incoming messages towards nodes i and a, respectively.
More precisely, in our factor graph, the message update rules
are given by [18]

mi→a(xi) =
∏

b∈N(i)\a

mb→i(xi), (II.1)

ma→i(xi) =
∑
xa\xi

f(xa)mj→a(xj), (II.2)

where N(a)\i means all neighbors of node a excluding node
i; the factor node xa is located between variable nodes xi
and xj . Also, we model f(xa) as follows:

f(xa) = f̃(xi, xj) = e−
||Li−Lj ||2

σ2 (II.3)

where σ2 is a parameter to control the relative strength of
the geometric constraint imposed by a neighboring node. If
we increase the value of σ2, the belief of each variable node
will have less effect on its neighbors.

To align the test nucleotide sequence, we select the nu-
cleotide candidate with highest probability and then calculate
the displacement β between the current nucleotide and the
selected candidate nucleotide. Therefore, for each nucleotide
in the test sequence, we have Zi, βi and ρi for each
nucleotide gi which are the most probable match nucleotide,
the most probable displacement and the probability of the
current match, respectively.

The main procedure for our proposed alignment method
is summarized in Algorithm 1.

A. Implementation details:

• X = ConvertData(X ) maps the input string of the
nucleotide sequence to a sequence of integer values
for the further processing. The mapping function of
four nucleotides {A,C,G, T} can be defined in a two-
dimension space where A = (1, 1), C = (1,−1), G =
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Algorithm 1 Proposed nucleotide sequence alignment algo-
rithm - estimate the location of the input sequence

Inputs: a reference sequence X ∈ RM , a test sequence Y ∈
RN , a threshold θ, the number of the candidate points n

Convert a string sequence to numeric sequence:
• X = ConvertData(X )
• Y = ConvertData(Y)

Extract feature and construct dictionary:
• Ŷ = ExtractFeature(Y)
• X̂ = ExtractFeature(X)
• D =MakeDic(X̂)

Find the initial estimate of the match location: For each
vector yi ∈ Ŷ perform:
• αi = FindSparseV ector(D, yi)
• [Li, ρ̂i] = FindTopScoreMatch(n, αi)

Refine the candidate match location:
• ρ = BP (L, ρ̂)

Find the correspond nucleotides:
• [Z, β] =Warp(X̂, ρ,L)

Output: the estimated version of aligned sequence Z

(−1, 1), and T = (−1,−1), respectively. Therefore,
{A,C,G, T} 7→ {(1, 1), (1,−1), (−1, 1), (−1,−1)}.

• Ŷ = ExtractFeature(Y) presents a vector extractor
algorithm using Y as a source sequence, where the result
is a two dimensional matrix containing the vectorized
one dimensional sequences. To this end, we consider a
vector of size S = 2× (2a+1) containing neighboring
nucleotides on two sides of a nucleotide, where a is a
positive integer and the first “2” is corresponding to the
dimension of the mapping space). For each nucleotide
gi in the test sequence Y, we vectorized a sequence
centered around the nucleotide gi to a feature vector
yi ∈ ZS×1. A two dimensional test feature data Ŷ ∈
ZN×S is then constructed from yi as follows:

Ŷ = {yi | 1 ≤ i ≤M}. (II.4)

Note that X̂ is created in the same manner as Ŷ but
from the reference sequence X instead.

• D = MakeDic(X̂) creates a dictionary D using
the vectors of X̂ . Later, the dictionary D is used to
match the extracted features of the source sequence to
corresponding the extracted features of the reference
sequence. We can write D = [x1 x2... xN ] where xi is
a feature vector of X̂ . Note that we normalize dictionary
D to guarantee the norm of each feature vector to be 1.

• αi = FindSparseV ector(D, yi) finds the candidate
match nucleotide using the sparse coding algorithm,
where αi is a sparse vector. Mathematically, we try to
solve the following sparse coding problem to find the
most sparse coefficient vector αi (see Fig. II.1) such
that

yi = Dα̂i. (II.5)

Although there are several methods to solve (II.5) [19]–
[21], in our work, we employ Subspace Pursuit (SP)
[20] because of its computational efficiency.

• [Li, ρ̂i] = FindTopScoreMatch(n, αi) picks up the
n largest coefficients of αi as n candidates. Li is a
n× 1 vector that stores the locations of these candidate
nucleotide and ρ̂i is the length-n vector that stores the
corresponding probabilities of Li. Each coefficient in
ρ̂i serves as a prior probability of matching the source
sequence at i to a sub-sequence centered around the
nucleotide gi. After finding the candidates and their
initial probabilities, we concatenate the result of each
nucleotide and construct following matrices:

L = [L1 L2... LN ] , ρ̂ = [ρ̂1 ρ̂2... ρ̂N ] , (II.6)

which we will use to apply belief propagation at the
next step.

• ρ = BP (L, ρ̂) models the problem by a factor graph
(see Fig. III.1) and applies belief propagation [18] to
update probability ρ. The updated probability ρ can
be used to align the reference sequence onto the test
sequence. In our case, we assign a variable node for
each nucleotide on the source sequence and connect
each pair of neighboring nucleotide with a factor node.
Also, we introduce one extra factor node to take care of
the prior knowledge obtained in the sparse coding step
for each nucleotide of the source sequence (for more
details, see [17]).

• [Z, β] =Warp(X, ρ,L, θ) returns the aligned sequence
Z and a displacement vector β which contains the
movement of each nucleotide in the reference sequence.
Note that in step BP (·), we calculated the refined
probability of each candidate nucleotide match.

III. EXPERIMENTAL RESULTS

In this section, we present our experiments to evaluate
the proposed method for aligning the nucleotide sequences
and compare it with SOAPaligner [1] and BWA [2]. We
considered the problem of aligning a sequence of human
nucleotides from the National Center for Biotechnology
Information (NCBI) [22]. To evaluate the performance of our
approach, we conducted two sets of tests on the nucleotide
sequences. In the first set, we selected twenty short sub-
sequences of human genomes and then used SOAPaligner,
BWA and the proposed method to find the location of
selected sub-sequence nucleotide in the human chromosome.
All of three algorithms successfully passed this test. We cre-
ated five shuffled sub-sequences of the reference sequence.
We chose six indexes js,j1, j2, j3, j4 and je where js < j1 <
j2 < j3 < j4 < je and we considered js and je as the index
of the first and the last nucleotide in the original sequence,
respectively. Then we shuffled the reference sequence by
swapping the sub-sequence [gj1 ...gj2−1] with [gj3 ...gj4−1].
Therefore, the test nucleotide sequence can be presented as

{gjs , ..., gj1−1, gj3 ...gj4−1, gj2 ...gj3−1, gj1 ...gj2−1, gj4 ...gje}
(III.1)
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(a) (b)

Fig. III.1: The result of proposed method for non-collinear
nucleotide sequence alignment. a) alignment result of proposed
method in compare to the ground truth. b) zoomed plot to show the
gap between the proposed method and ground truth on the jump
point.

where gj is the nucleotide for index j. In this set of the
test sequences, SOAPaligner and BWA could not find proper
alignments. In contrast, Fig. III.1 shows the proposed method
alignment output agrees with the ground truth by a gap of 10
to 15 nucleotides. Throughout the experiments, the following
parameters were used: the number of candidate points n is
set to be 3, k = 3 and a = 20.

The computational complexity of proposed is mainly
determined by the following three steps: 1) extracting sub-
sequence nucleotides as features and constructing the dic-
tionary, 2) finding candidate nucleotides via sparse coding,
and 3) applying BP. Assume the size of the test and refer-
ence sequences are N and M nucleotides, respectively. The
required time of feature extraction will be O

(
h(M + N)

)
,

where h is the size of the vector of extracted features for
each nucleotide. As for dictionary construction, the only
time needed is for the normalization of each column, which
requires O(hM) amount of time. Thus the total time com-
plexity of the first step is O

(
h(M +N)

)
. In the second step

of the SCoBeP, the time complexity of SP is O
(
log(f)hM

)
[23], where f is the number of iterations for finding the
sparse vector. Since we have to repeat the process of finding
candidate points for all N feature vectors, the time complex-
ity of finding candidate points by SP is O

(
log(f)hMN

)
.

In the third step, the time complexity of BP in our factor
graph is O(vn2M), where v is the number iterations before
converging. Consequently, if the SCoBeP uses SP, its time
complexity will be O

(
vn2M +h(M +N)+ log(f)hMN

)
.

IV. CONCLUSION

In conclusion, we have proposed a nucleotide sequence
alignment method based on the sparse coding and belief
propagation. Our technique performs alignment by first
running sparse coding over an over-complete dictionary
constructed from the nucleotides of a reference sequence
to gather possible candidate nucleotides. Belief propagation
is then applied to eliminate bad candidates and to select
the best matches. The experimental results illustrate that
our proposed algorithm shows comparable performance to
those of SOAPaligner [1] and BWA [2]. We believe that the
proposed method can be used for various collinear and non-
collinear nucleotide sequence alignment applications.
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