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Abstract— G-networks and the Random Neural Network
are a class of stochastic models that have a broad range
applications ranging from modeling neuronal ensembles, gene
regulatory networks, and the performance of computer sys-
tems and networks and modeling of energy flows in systems
with renewable energy sources. Eaarlier applications include
learning, bio-medical image processing, and network routing.
Gene regulatory networks (GRNs) consist of thousands of genes
and proteins which dynamically interact with each other. Once
these regulatory structures are revealed, one must understand
their dynamical behaviors through pathway activities. GRN
dynamics are often investigated via stochastic models since
molecular interactions are discrete and stochastic. However,
this stochastic nature requires substantial computation to find
the steady-state solution of the GRNs where thousands of genes
are involved. This review focuses on a stochastic GRN modeling
techniques based on G-networks which provide the analytical
steady-state solution for efficient GRN dynamics. Three appli-
cations of G-networks to GRNs show that this novel approach
serves to detect abnormalities from gene expression data, and
that they help to explicit the behavior of complicated GRN
models by dividing the gene regulatory processes into DNA
and protein layers. Appropriate reverse engineering methods
similar to neural network learning allows the G-network to
provide important insight into the manner in which GRNs
respond to external conditions, offering biologically meaningful
and clinically useful information, and as an exploratory design
tool for synthetic biology.

Index Terms— -Networks, Gene Regulatory Networks,
Stochastic Modeling, Synthetic Biology-Networks, Gene Reg-
ulatory Networks, Stochastic Modeling, Synthetic BiologyG

I. INTRODUCTION

G-networks [18] and the Random Neural Network [17],
[41] are a class of stochastic models inspired from queueing
network theory [38]. They have a broad range of applications
ranging from the modeling of neuronal ensembles [14], [?], task
optimisation in computer systems and decision environments
[1], [42], [43], energy optimisation in packet networks [39],
[37], network admission control [27], modeling of energy flows
in systems with renewable energy sources [33], [32], learning
[36], [34], image and video processing [3], [13], [40], [15],
detection of explosive mines [23], [25], network routing [54],
network security [28], [35], the analysis of chemical reactions
[30] and all the way to the modeling of gene regulatory
networks. Thus these probability models are a link between
operations research and computer system performance on the
one hand, and fundamental subjects in system biology including
the neuroscience and genetics on the other.

Gene regulatory networks (GRNs) play a key role to un-
cover the functions of genes and their genetic effect on a
specific phenotype. Thanks to the advancement of measuring
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technology such as microarrays, biologists easily capture the
expression patterns of mRNA/protein under different con-
ditions. Along with these bursts of biological data, various
statistical/mathematical models have been introduced for in-
vestigating the dynamic behaviors of a system. These dynamics
can be defined as quantitative changes of gene expression level
responding to the environmental conditions of the system, which
provides important clues connecting the gene behaviors to a
specific phenotype. Due to the stochastic nature of biomolecular
reactions, the GRN models have been widely described by
stochastic processes which could be more significant at a single
molecule level [58], and stochastic simulation techniques are
commonly used in this area to provide a solution to a set of
biomolecular reactions [45].

However, simulating every single reaction in a large-scale
GRN gives rise to heavy computation times so that far more
efficient stochastic modeling techniques are required. In [22],
a new approach to the steady-state analysis of GRNs based on
G-Network theory [20], [21] was introduced while G-networks
were firstly applied to GRNs with simplifying assumptions
concerning gene expression in [2]. Other papers regarding the
theory of G-networks with positive and negative customers,
signals, triggers, and resets can be found in [20], [21], [26],
[24]. Specifically, the use of negative customers enables us to
model negative gene regulatory interactions, and G-networks
provide a closed form solution in steady-state, which enables
us to extend the analysis to the dynamics of large-scale GRNs.

However, the G-network approach in GRN modeling still has
some difficulties caused by the large number of parameters.
In this review, we will revisit the G-network theory and its
application for abnormal pathway detection [51], [50] where
the abnormality is defined as an unexpected different activation
level of a pathway given a normal condition. The rational
of this application is to map gene regulation processes to
the reactions of the G-network model and then to reduce
the number of model parameters on the basis of appropriate
biological assumptions.

II. GENE REGULATORY PRINCIPLES

Gene regulation is involved with the activities of various
mRNA and protein molecules such as transcription factors,
repressors, and activators (Fig. 1). Depending on cell growth
conditions, there are several copies of partially replicated
chromosomes [58]. Each copy of the genes spontaneously
switches ON and OFF at given rates. In ON state, an mRNA is
synthesized from the DNA template by RNA polymerases, called
transcription which is followed by translation. In translation of
a prokaryote, multiple ribosomes spaced in about 80 nucleotides
[57] bind successively to the mRNA as soon as it is accessible
to the mRNA strand and corresponding proteins are produced
from the attached ribosomes. These translation processes are
continued until the mRNA is degraded by an RNAse-E. Many
studies have interpreted the variation of the protein levels in
terms of protein bursting which takes place in short periods
of high expression intensity followed by long periods of low
expression [63], [11]. In addition, there are various molecules
that are involved in post-translation processes such as pro-
tein multimerization and phosporylation. Also DNA binding
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Fig. 1. Seven biological processes for gene expression.
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Fig. 2. Seven biological processes for gene expression in a G-network
model.

proteins, especially activators and repressors, can regulate
their target gene expressions by increasing and decreasing the
binding affinity between the target DNA and RNA polymerases.
Lastly, degradation of mRNAs and proteins is one of the main
factors for the tight control of gene expressions in a cell. An
mRNA is cleaved by RNase-E and then is degraded by a
combination of ribonucleases including 3′ − 5′ exonucleases,
while proteins can be degraded by ubiquitination or protease
activity.

A. G-networks for GRNs

As discussed above, gene expression is considered as a set
of interactions of discrete molecules; hence stochastic modeling
is a natural way to describe these processes. In this paper, a
model is defined as a set of mathematical equations to describe
various biochemical reactions for gene regulation principles.
Typically, the solution of this stochastic model is found using
the Gillespie algorithm [44], [53] which is a broadly applicable
numerical method for such stochastic models. However, the
purely numerical approach to the reaction equations limits
its applicability to large-scale stochastic model. As mentioned
in the Introduction, G-networks have an analytic steady-state
solution for a stochastic model even if it consists of a large
number of reaction equations.

G-network theory was firstly applied to GRNs with sim-
plifying assumptions concerning gene expression in [2] and a
more generalized model for GRNs was introduced in [22]. In
terms of GRNs, a node in the G-network is a ”place” where
”customers” are stored, and a customer is a latent variable
containing gene expression information. We will follow the idea
and notations of G-network modeling in [22]. Let Xi(t) be an
integer-valued random variable which represents the lever or
intensity expression of the ith gene at time t. If the Xi(t) is
zero, the gene i cannot interact with other genes. If the ith
gene (placed center in Fig. 2) interacts with other genes, the
following events occur:

• With a rate constant λ+i (λ−i ), a positive (negative)
customer arrives to the ith gene from the external of

the system. Translation and protein bursting processes in
Figure 2 are for the positive case and degradation process
can be represented by the negative customer activity.

• With probability p+ij , gene i activates gene j; when this

happens, Xi(t) is depleted by 1 and Xj(t) is increased
by 1. Activation and Transcription processes in Figure 2
belong to this case.

• With probability p−ij , gene i inhibits gene j; when this hap-

pens, both Xi(t) and Xj(t) are depleted by 1. Repression
process in Figure 2.

• With probability pijl gene i joins with gene j to act upon
gene l in excitatory mode, as a result of which both Xi(t)
and Xj(t) are reduced by 1, while Xl(t) is increased by
1. However, our models, in this study, do not include this
type of interaction.

• With probability di, which is defined as follows,

di +
n
∑

j=1

(

p+ij + p
−

ij +

n
∑

l=1

pijl

)

= 1

the signal of gene i exits the system so Xi(t) is depleted
by 1.

The network state is represented by the n-vector of non-
negative integers x = {x1, ..., xn}, and we also define the vec-
tors of non-negative integers x+

i = {x1, ..., xi+1, ..., xn}, x
−

i =
{x1, ..., xi−1, ..., xn}, x

+−
ij = {x1, ..., xi+1, xj−1, ..., xn}, Now

let the random process X(t) = {X1(t), ..., Xn(t)} be defined
with Xi(t). If P (x, t) is the probability that X(t) takes the value
x at time t, then the balanced equation of the G-networks is:

P (x, t+∆t) =

n
∑

i=1

[

(λ
+

i ∆t+ o(∆t))P (x
−

i , t)I(xi > 0)

+ (λ
−

i ∆t+ o(∆t))P (x
+

i , t)

+

n
∑

j=1

{

(µip
+

ij∆t+ o(∆))P (x
+−

ij , t)I(xj > 0)

+ (µip
−

ij∆t+ o(∆))P (x
++

ij , t)

+ (µip
−

ij∆t+ o(∆))P (x
+

i , t)I(xj = 0)
}

+ (µidi∆t+ o(∆t))P (x
+

i , t)

+ (1− (λ
+

i + λ
−

i + µi)∆t+ o(∆t))P (x, t)

]

(1)

where µi is the activity rate of the ith gene, and the quantity
I(C) is 1 if C is true and 0 otherwise. Throughout, the quantity
o(∆t) → 0 as ∆t → 0. The first term in the above equations
describes the increment of the ith genes activation level by an
effect that is external to the network, while the second term
describes the decrement of the ith gene expression level by an
external negative or inhibitory effect. The third term is the
probability that the ith gene affects the j positively so as to
reinforce its expression. The fourth and fifth terms describe
a negative effect from the ith gene to decrease the jth gene’s
expression. The sixth term describe the transition that occurs
when is the ith gene’s expresion level is autonomously depleted,
and the last term describes the situation where no transitions
occur in time δt.

From these equations it has been shown [22] that the steady-
state probability that gene i is expressed is given by:

qi =
Λ+

i

µi + Λ
−

i

where Λ+
i = λ

+
i +

n
∑

j=1

qjµjp
+
ji

Λ−i = λ
−

i +

n
∑

j=1

qjµjp
−

ji

(2)

580



Furthermore the following product form solution satisfies ((1))
in steady-state [21].

P (X = x) =

n
∏

i=1

qxi

i (1− qi) (3)

when the qi < 1. That is, by substituting ((2)) and ((3)) into
((1)), then ((1)) is satisfied [21].

III. ABNORMAL PATHWAY DETECTION

Among several applications for G-networks [51], [50], [52],
we will describe how to detect abnormal pathways [50] in
GRNs. Differentially Expressed Gene (DEG) analyses are com-
monly used with case-control gene expression data. But they are
limited in detecting defective pathways since they only observe
the amount of expression of a gene itself rather than considering
the flows of expression signals. So, we focused on estimating the
transition probabilities (p+ji, p

−

ji) which indicate the information
flow and we compare them to their initial assumed values to
identify the abnormal pathway activities between two different
conditions such as normal and disease.

We assume that the number of customers or activation levels
for the different genes is proportional to the mRNA expression
levels which were observed in a steady-state. If we denote the
average mRNA level of the ith gene by x̄i, then from the product
form solution we know that x̄i = qi/(1− qi) in ((3)). Therefore
the steady-state probability that there is at least one mRNA of
the ith gene is

qi =
x̄i
x̄i + 1

(4)

The main goal of this approach is to identify transition proba-
bilities, p+ji and p−ji in ((2)), that a customer moves from the jth
gene to the ith gene in an abnormal condition, and compare
them with the corresponding initial transition probabilities.

1) Abnormal Pathway Detection Algorithm: Let λ+i and
λ−i be the positive and negative customer input rates, respec-
tively, and µi be the service rate. First, we determined these
parameter values in a normal condition with the following
assumptions:

• Let the transition probabilities be pj = {p
+
ji, p

−

ji} and pj

have uniform probabilities. That is all elements in pj have

1/(Dout
j + 1) where Dout

j is the out-degree of gene j
• The positive customer input rate, λ+i , can be set as λ+i =
Din

i where Din
i is the in-degree.

• The firing rate, µi, is proportional to the out-degree
distribution of the ith gene; µi = D

out
i +1 where the

additional one is for the case that a customer goes out
of the system.

Then, the only parameter we do not know is λ−i which can be
easily obtained by optimizing the follow objective function.

qi − fi(λ
+
i , µi, qj , pj ;λ

−

i ) (5)

Now, let p′j be the transition probability in an abnormal

condition. Our interest is to estimate this p′j given all the other
parameters are the same with that of the normal condition.
So it is obvious that p′j = pj if the abnormal data is the

same as the normal data. Let q′i be the observed steady-state
probability of the ith gene in the abnormal condition. We find
the probabilities by minimizing the following sum of squared
error with a constraint 0 ≤ p′j ≤ 1 :

∑

i

(q′i − fi(q
′

j , λ
+
i , λ

−

i ,µij ; p
′

j))
2

(6)

In all the optimization steps to minimize ((6)), we use the
Barzilai-Borwein spectral method in the BB package [65] which
is closely related to the well known Conjugate-Gradient method.

However this approach yields local minima so we need following
iterative search:

1) Set the solution boundary, [Blower, Bupper], of the p′j as
0 and 2× pj , respectively

2) Find total H solutions {p
′(1)
j , ... , p

′(H)
j } with initial

probability values which are randomly selected from
[Blower, Bupper] (H = 2000).

3) Reset the boundary by truncating the lower and upper
5% of the estimated solutions.

4) Go to the 2nd step and repeat this iteration until the

standard deviation of {p
′(1)
j , ... , p

′(H)
j } is less than 0.01

5) p̂
′

j =
∑H

i=1{p
′(1)
j , ... , p

′(H)
j }

As the last step of this algorithm, we tested the significant
of the estimated p̂′ij by permuting the samples across the
normal and abnormal group to generate a null distribution.
The null hypothesis of this test is p̂′ji 6= pji. To precede the
test, its samples were shuffled at random and divided into
normal and abnormal groups with the same sizes of the original

groups. Then obtain the transition probability, p
(m)
ij , of the

mth permutation by performing the same algorithm with the
permutated data. Let M be the number of permutations then
the empirical p-value of p̂′ij can be obtained as follows,

p-value of p̂′ij =

{

1
M

∑M

m=1 I(p̂
′

ij ≤ p
(m)
ij ) if p′ij > pij

1
M

∑M

m=1 I(p̂
′

ij ≥ p
(m)
ij ) if p′ij < pij

where I(C) is the indicator function. Thus if the p-value is less
than a criterion α then the null hypothesis is rejected. We used
α = 0.001.

2) Brain Tumour with p53 Networks: In order to assess
our approach using real experimental data, we built a p53
network which is a well studied system in human cells and
whose most important feature is tumor suppression when DNA
is damaged. The regulatory structure of the p53 pathway with
28 genes was constructed on the basis of the KEGG database
[49], and we collected a microarray mRNA expression dataset
(GSE12941) from GEO [4]. This dataset consists of 10 non-
tumor liver tissue and 10 hepatocellular carcinoma (HCC)
samples. Before applying the proposed method, the data were
normalized and scaled with mean 3 and variance 1 because
the average number of mRNAs of a gene in a single cell
is assumed to be approximately 3 (The mRNA transcription
and degradation rates are assumed to be 0.0062sec−1 and
0.002sec−1 from [63] so that the average is 0.0062/0.002 ≈ 3).

In Figure 3, we can simply draw following two conclusions.
First, ATM/ATR-CHEK1/CHEK2 pathways are well known
to be activated when the DNA is damaged [8]. Despite the
apparent lack of significance of ATM and ATR in their t-
tests, their positive pathways are shown to be significantly
inactivated in cancer samples. Also the negative pathways
between MDM4-MDM2 and p53 are significantly activated. So
these results indicate that p53 seems to stay at low levels in
cancer samples, which means its function of tumor suppression
is not activated in tumor cells. The other conclusion is that
caspase (CASP3, CASP8, and CASP9) mediated pathways
which are well known to trigger cell apoptosis are not activated
or significantly inactivated in tumor samples. The p-values are
also not significant in the t-test. These results seem to show
that our method properly reflects the properties of the tumor
samples.

IV. DISCUSSION

Thanks to the development of measurement devices and
technology in biology, a vast amount of biological data is
being generated every day, and pushes researchers toward the
genome wide view of a system and appropriate tools which
can handle the large amount of data are required. In this
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Fig. 3. The p53 network with the results of GSE12941 dataset analysis.
The solid line represents significantly activated (black) or inactivated (grey)
pathways while the dashed line indicates non-significant pathways. Wider
lines represent more significant pathways. The grey nodes are the significant
DEGs from the t-test. The radius of a node is larger if its DEG test is more
significant with a 0.05 significant level. White nodes indicate non-significant
genes.

review, we have shown how G-network theory that arises
from neural network and queueing network developments, can
be used to model GRNs efficiently. Since the nature of gene
regulation processes is discrete and probabilistic, stochastic
modeling is an appropriate choice for describing biological
systems. However, the usage of conventional probabilistic mod-
eling approaches with the Gillespie algorithm is limited by
their computational difficulty especially when the number of
molecules is large. This computational cost due to large memory
space and non-polynomial computational complexity are basic
limitations in conventional stochastic modeling approaches. The
G-network modeling approach allows us to obtain the steady-
state behaviour of GRNs with only polynomial computational
complexity thanks to the product form solution of G-Networks.

However, the approach using G-networks, applied to detect-
ing abnormalities from gene expression data, must be assessed
with respect to structural robustness. For example, if an edge
is removed or added to the p53 network, would this be readily
detected? Once this structural robustness analysis has been
carried out, sensitivity analysis of the parameters or genes
can help identify the key molecules that are responsible for
the phenotype. Also, a living cell exhibits oscillatory behaviors
which play an important role in cellular processes such as the
circadian clock and the cell cycle. G-network theory currently
focuses on the steady-state, though the G-network system
equations are time-dependent and can in principle be applied to
the oscillatory expressions of a system. However, once a large-
scale system is analyzed using G-networks, then it could be
narrowed down into small network modules and their detailed
dynamics can be addressed by conventional techniques such as
the Gillespie algorithm. Also an analytical study for finding the
solution of the transients, such as a quasi-stable systems, can
be addressed using approaches such as [62].

Another interesting extension would be to study bioengi-
neered organisms in synthetic biology to “engineer living
systems” with promising applications to health, energy and
environmental problems. Though synthetic biology requires
expertise from diverse disciplines, modeling is becoming im-
portant for designing new complex synthetic systems [64],

[66]. Here again, G-network modeling could be useful. Again,
determining how a synthetically introduced biological circuit
will affect the behavior of a cell through its generations
via conventional stochastic modeling is difficult due to the
complexity and very large-scale of a living system. G-Networks
which predict long-run behavior could be used to reveal the
behavioral and evolutionary properties of the synthetic system,
and to determine whether in the long run a complex synthetic
biological system attains a safe state. Such assessment and
monitoring methods could be essential for the safe development
of synthetic biology.
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