
  

  

Abstract—In this study, we employed diffusion tensor 

imaging (DTI) to construct brain structural network and then 

derive the connection matrices from 96 healthy elderly subjects. 

The correlation analysis between these topological properties of 

network based on graph theory and the Cognitive Abilities 

Screening Instrument (CASI) index were processed to extract 

the significant network characteristics. These characteristics 

were then integrated to estimate the models by various 

machine-learning algorithms to predict user’s cognitive 

performance. From the results, linear regression model and 

Gaussian processes model showed presented better abilities 

with lower mean absolute errors of 5.8120 and 6.25 to predict 

the cognitive performance respectively. Moreover, these 

extracted topological properties of brain structural network 

derived from DTI also could be regarded as the bio-signatures 

for further evaluation of brain degeneration in healthy aged 

and early diagnosis of mild cognitive impairment (MCI). 

Keywords: Diffusion tensor imaging (DTI), graph theory, 

cognitive abilities screening instrument (CASI), linear 

regression model, Gaussian processes model, mild cognitive 

impairment (MCI) 

 

I. INTRODUCTION 

Alzheimer’s disease (AD) is the most common form of 
dementia, that comprising 50-70% of all dementia cases[1]. 
Currently, 35.6 millions of  people suffer from AD globally 
and the number is predicted to rise to 115.4 million by 
2050[2]. By the time patients begin to suffer from the 
symptoms of dementia, it causes memory loss and other 
cognitive deficits.  

Mild Cognitive Impairment (MCI) is a cognitive decline 
that cannot be simply explained by an individual’s age and 
education, but does not notably intervene with the 
individual’s activities of daily living. The risk of conversion 
to AD is higher in MCI than in the general aged population, 
as up to 50% of these patients develop the disease within 2 
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years [3]. In a four- year prospective cohort study, 41% of 
patients with MCI progressed to dementia by the end of the 
study. A systemic review found that most types of dementia 
are preceded by a recognizable phase of mild cognitive 
decline. The prevalence of MCI for people age 65 and older 
ranged from 3% to 19% which means that currently around 
71,000 to 447,000 persons in Taiwan have MCI and this 
number will increase to 170,000 to 1,080,000 in year 2031. 
Thus, early detection and diagnosis for people with MCI has 
been an inevitable health issue in Taiwan. 

Recently, non-invasive neuroimaging and 
neurophysiological techniques, such as structural magnetic 
resonance imaging (MRI), diffusion MRI, functional MRI, 
and EEG/MEG have provided a new perspective on 
structural and functional connectivity patterns of the human 
brain. And the combination of neuropsychological 
techniques and neuroimaging data is one proposed way to 
increase diagnostic power for dementia, since preclinical AD 
has been associated with both cognitive and imaging 
changes [4, 5]. Moreover, some researches also employed 
the machine learning and pattern recognition methods to not 
only classify AD, MCI and normal controls from individual 
MRI datasets, but also predict clinical score of cognitive 
performance [6-9].  

In this study, we aim to demonstrate an objective method 
to predict individual cognitive performance based on the 
topological properties of brain structural network and 
machine learning approaches.  We assume that these features 
of network characteristics derived from brain structural 
network could be regarded as the imaging-based 
bio-signatures to benefit our understanding in aging and 
neurodegenerative diseases. These complex features will be 
integrated as the bio-signatures for not only further early 
detection and diagnosis, but also a useful tool for evaluating 
the efficacy of intervention in patients with MCI and AD. 

II. MATERIALS AND METHODS 

A. Participants 

96 elderly Han Chinese male subjects with mean age of 
80.6±5.6 years (range, 65-92 years) recruited from the 
community and a public veterans home in northern Taiwan. 
All participants were undergone neuropsychological 
assessments. The neuropsychological assessments include the 
following two batteries: (1) Mini-Mental-State Examination 
(MMSE); (2) Dementia severity will be assessed by the 
clinical dementia rating (CDR) score. 

B. Cognitive Performance 

All participants also had sufficient visual and auditory 
acuity to undergo cognitive testing. There were administrated 
the Cognitive Abilities Screening Instrument, Chinese 
version (CASI C-2.0) The CASI test, which is a 100-point 
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cognitive test and provides quantitative assessment in nine 
domains of cognitive function (long-term memory, 
short-term memory, attention, concentration/mental, 
language, visual construction, and list-generating fluency), 
was designed for cross-cultural studies. 

The exclusion criteria included the following: (1) 
presence of any diagnosis on Axis I of DSM-IV, such as 
mood disorder or psychotic disorder; (2) neurobiological 
disorder, such as dementia, head injury, stroke, or 
Parkinson’s disease; (3) severe medical illness, such as 
malignancy, heat failure, and renal failure; (4) illiteracy; (5) 
subjects with CDR score of great than 0.5, or a score of 50 or 
less on CASI [14]; and (6) having ferromagnetic foreign 
bodies or implants anywhere in the body that are electrically, 
magnetically, or mechanically activated. Based on these 
criteria, a group of non-demented elderly subjects have been 
recruited for this study. 

 
Figure 1 The diagram of workflow for structural connectivity analysis and 

the estimation of prediction model 

 

 
Figure 2 The visualization of the weighted connection matrices and brain 

networks of FA, FN, and Length matrix 
The top left shows white matter connection matrix of FA value between any 
two nodes; the bottom left shows visual connection between the nodes. In 
the same way, the middle and the right shows whiter matter connection 
matrix and visual brain network based on fiber number and fiber length, 
respectively. And FN value and Length value were normalized with range 
of 0-1. The data was only normalized for visualization, not for all analyses 
in this study. 

C. MRI acquisition 

All healthy subjects and patients were received an MRI 
scan within 1 month after their cognitive assessments. Images 
have been acquired on a 3.0T Siemens MRI scanner 
(Siemens Magnetom Tim Trio, Erlangen, Germany) with 
12-channels head coil in National Yang-Ming University in 
Taiwan. All the images were acquired parallel to the anterior 
commissure-posterior commissure line with the same FOV of 
256 mm. DTI was performed using single-shot echo-planar 
imaging (EPI) sequence (TR/TE=10000/83 ms, diffusion 
encoding in 30 directions, b = 0, 1000 s/mm

2
, matrix size = 

128 ! 128, number of average = 4). 

D. Construction of Brain Structural Connection Matrix  

Diffusion tensor imaging (DTI)), a non-invasive 
technique that can explore human WM microstructure, 
provide mounting evidence that features of WM 
microstructure are closely coupled with cognitive functions 
[15-17]. 

Figure 1 showed the diagram of workflow for structural 
connectivity analysis and the estimation of prediction model. 
The detail will be described in the following parts of D, E , F 
and G. 

96 datasets will be processed by using PANDA (a 
Pipeline for Analyzing braiN Diffusion images, 
http://www.nitrc.org/projects/panda/) for DTI reconstruction, 
deterministic tractography and network construction. To 
determine the nodes of brain networks, we used the 
automated anatomical labeling (AAL) template to segment 
the whole cerebral cortex into 90 areas (45 regions in each 
hemisphere)[18]. Finally, we could extract three kinds of 
brain network connection matrices, fractional anisotropy 
(FA) matrix, fiber number (FN) matrix and fiber length (FL) 
matrix, to describe the edge between nodes within each 
subject shown in Fig. 2. The weighted values of FA matrix 
indicate the degree of myelination within each structural 
connection. From the FN structural connectivity, weights 
indicate the number of joint fibers connected between 
anatomical nodes.  And from FL matrix, the weighted values 
indicate the length of fiber that reached from one node to 
another.  

E. Topological Properties of Structural Brain Networks 

First, the weight of edges in these three brain network 
matrices should be preprocessed to reduce the noise effect 
induced by data acquisition, reconstruction and tractography 
algorithm. For FN matrix, we kept the weight of edge when 
it is greater than 3, else setup as zero [13]. For FA matrix 
and FL matrix, when the weight of edge of FN matrix is 
greater than 3, the weight of edge is retained in both matrices, 
otherwise would be defined as zero. Moreover, these three 
weighted matrices could be also binarized based on that 
value is zero or not. One more rule for FA matrix is based on 
the FA value. If FA value is bigger than 0.2, the value of 
binary FA matrix would be 1, else would be zero.  

In the second step, the structural networks were 
analyzed by using graph theoretical methods and six 
topological properties of structural brain network were then 

calculated by the Brain Connectivity Toolbox (BCT, 
http://www.brain-connectivity-toolbox.net): (1)Degree: node 
degree is the number of links connected to the node. 
(2)Strength: node strength is the sum of weights of links 
connected to the node. (3) Local Efficiency: The local 
efficiency is the global efficiency computed on the 
neighborhood of the node. (4)Local Clustering Coefficient: 
the clustering coefficient of a node is the number of existing 
connections between the node’s neighbors divided by all 
their possible connections. (5) Shortest Path Length: shortest 
path length is the minimum number of edges that must be 
traversed to go from one node to another. (6) Node 
Betweenness Centrality: node betweenness centrality is the 
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fraction of all shortest paths in the network that contain a 

given node [15]. 

F. Correlation Analysis 

The bivariate correlation analysis and partial 

correlation analysis with co-variables of age and geriatric 

depression scale (GDS) factors were performed using SPSS 

software between the CASI scores and the topological 

properties derived from the binary and the weighted 

anatomical brain networks respectively in all 96 subjects. 

Then we extracted 26 features based on the criteria of 

correlation coefficient in two methods of correlation analysis  

 
TABLE 1  Twenty-six network characteristics with correlation coefficient 

both greater 0.3 and p<0.01 with co-variables of age and GDS factors 

Index of 
Feature 

Region Connection Matrix 
Network 
Measure 

1 ACG.L binary FA (FN>3&FA10.2) Eloc 

2 ACG.L weighted FA (FN>3&FA10.2) Eloc 

3 SPG.L weighted Length(FN>3) C 

4 ANG.L weighted FA (FN>3) Eloc 

5 ANG.L weighted FA (FN>3&FA10.2) Eloc 

6 PCUN.L weighted FA (FN>3) Strength 

7 PCUN.L weighted FA (FN>3&FA10.2) Strength 

8 PCUN.L weighted FA (FN>3) Eloc 

9 PCUN.L weighted FA (FN>3&FA10.2) Eloc 

10 PCL.L weighted FA (FN>3) Strength 

11 PCL.L weighted FA (FN>3&FA10.2) Strength 

12 PCL.L weighted Length (FN>3) Strength 

13 PCL.R binary FA/FN/Length (FN>3) L 

14 PCL.R binary FA (FN>3&FA10.2) L 

15 PCL.R weighted FA (FN>3) Strength 

16 PCL.R weighted FA (FN>3&FA10.2) Strength 

17 PCL.R weighted Length (FN>3) Strength 

18 PCL.R weighted Length (FN>3) C 

19 THA.L weighted FA (FN>3) Eloc 

20 STG.L binary FA/FN/Length (FN>3) Degree 

21 STG.L binary FA (FN>3&FA10.2) Degree 

22 STG.L binary FA/FN/Length (FN>3) L 

23 STG.L binary FA (FN>3&FA10.2) L 

24 STG.L weighted FA (FN>3) Strength 

25 STG.L weighted FA (FN>3&FA10.2) Strength 

26 STG.L weighted Length(FN>3) Strength 

ACG.L: Anterior Cingulate Gyrus in the left hemisphere; SPG.L: Superior  
Parietal Gyrus in the left hemisphere; ANG.L: Angular Gyrus in the left 
hemisphere; PCUN.L: Precuneus in the left hemisphere; PCL.L: Paracentral 
Lobule in the left hemisphere; PCL.R: Paracentral Lobule in the right 
hemisphere; THA.L: Thalamus in the left hemisphere ; STG.L: Superior 
Temporal Gyrus in the left hemisphere. Eloc: Local efficiency; C: 
Clustering coefficient; L: Shortest path Length. 

TABLE 2 The performances of the estimated prediction models based on 
four algorithms and the leave-one-out cross-validation 

 

 
Figure 3 The histograms of the estimated error based on four selected 

algorithms and leave-one-out cross-validation 

 

both greater than 0.3 and p value less than 0.01 shown in 

Table 1. 

G. Estimation of Prediction Model 

The model for predicting the cognitive performance 

using the above 26 topological properties of brain structural 

network was established by an opensource machine learning 

software - Weka  (http://www.cs.waikato.ac.nz/ml/weka). 

Four algorithms for model estimation were selected for this 

study including linear regression model, PLS classifier, 

Gaussian processes, and multilayer perception. In order to 

realize the ability of prediction in each model, the 

leave-one-out cross-validation was employed here. 96 

repetitions by 95 subjects as training data and 1 subject as 

testing data were analyzed to obtain the averaged/median 

correlation coefficient, mean absolute error and root mean 

squared error in training data and the mean absolute error in 

testing data. Table 2 shows the analyzed results based on four 

algorithms. 

III. RESULTS 

Table 1 shows the significant features extracted from 
the topological measurements of brain network 
characteristics. The correlation coefficient between these 
features and CASI score was higher than 0.3 and p<0.01. 
According to the results, we obtained twenty-six features 
and applied these features into further estimation of 
prediction model for cognitive performance in healthy aging 
subjects. 

Table 2 shows the averaged/median correlation 
coefficient, mean absolute error, and root mean squared error 

529



  

of training data and the mean absolute error of testing data by 
four algorithms with leave one out cross validation. From 
Table 2, the linear regression model shows the smallest mean 
absolute error of 5.81 with standard deviation of 5.29. The 
result of Gaussian processes was relatively better. The 
correlation coefficient in the training set was up to 0.85 and 
the error is about 6.25. The multilayer perception shows the 
highest correlation coefficient of 0.96, but poor ability of 
prediction with the highest mean absolute error of 10.2.  

IV. DISCUSSIONS 

In this study, we successfully constructed binary and 
weighted brain anatomical networks from 96 normal elderly 
subjects using DTI. Network topological properties were 
analyzed based on graph theory, and twenty six features 
were extracted with high association according to the 
correlation analysis with CASI scores. Four kinds of 
machine learning algorithm, linear regression model, PLS 
classifier, Gaussian processes model, and multilayer 
perception, were then used for the estimation of prediction 
model for cognitive performance in healthy ageing. The 
leave-one-out cross-validation was employed for the 
evaluation of these models.  

For the results, the linear regression model shows the 
lower mean absolute error for validation data and the 
Gaussian processes presents the higher correlation coefficient 
in training data. Moreover, we also analyzed the histogram of 
mean absolute error to identify the ability of models for 
predicating cognitive performance score.  Figure 3 shows the 
histogram of error distribution of four algorithms.  The error 
in multilayer perception algorithm appeared many times in 
the range of greater than 10. The errors of other three 
algorithms are mainly less than 10. That is the reason we 
could obtain the smaller median value of prediction error of 
4.09 and 5.06 in linear regression model and Gaussian 
processes model respectively shown in Table 2. 

Moreover, we will integrate with other imaging 
modalities, such as T1 and resting-state functional MRI for 
extracting more significant features. Based on T1 image, we 
could employ T1-based voxel-based morphology and 
T1-based anatomical network analysis. Based on 
resting-state functional MRI, the frequency information map 
of regional homogeneity, amplitude of low-frequency 
fluctuation and functional connectivity could also be 
analyzed for extracting the imaging-based bio-signatures. 
These features will provide different viewpoints from 
structural compositions, anatomical connectivity, and 
functional connectivity based on various MRI images. A 
prediction model for cognitive performance in healthy 
ageing with higher accuracy and lower estimated error will 
be estimated with these features in the future. 

V. CONCLUSION 

In this study, we purposed an approach using diffusion 

tensor imaging and graph theory to extract the features from 

three kinds of brain network matrices and various network 

characteristics. Using four machine learning algorithms, we 

estimated the prediction models based on the features and 

evaluated the efficiency of prediction models by 

leave-one-out cross-validation. The results showed that this 

concept is workable but the estimated error is still not good 

enough. We will integrate with other MRI modalities and 

extract more significant features to implement the prediction 

model with higher accuracy and lower error. Also, we will 

apply this approach for the MCI and AD dataset and look 

forward to evaluating the degree of cognitive performance 

after treatment and the efficiency of intervention in patient 

with dementia. 
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