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Abstract— We present a new method for denoising of Dif-
fusion Weighted Images (DWI) that shares several desirable
features of state-of-the-art proposals: 1) it works with the
squared-magnitude signal, allowing for a closed-form formu-
lation as a Linear Minimum Mean Squared Error (LMMSE)
estimator, a.k.a. Wiener filter; 2) it jointly accounts for the DWI
channels altogether, being able to unveil anatomical structures
that remain hidden in each separated channel; 3) it uses a
Non-Local Means (NLM)-like scheme to discriminate voxels
corresponding to different fiber bundles, being able to enhance
the anatomical structures of the DWI. We report extensive
experiments evidencing the new approach outperforms several
related methods for all the range of input signal-to-noise ratios
(SNR). An open-source C++ implementation of the algorithm
is also provided for the sake of reproducibility.

Index Terms— Diffusion MRI, denoising, NLM, LMMSE.

I. INTRODUCTION

The noise pattern in Magnetic Resonance Imaging (MRI)
has been modeled as Rician distributed, as long as the ac-
quired image is the real envelope of a complex Gaussian [1]:

M = |(Ac +nc)+ j(As +ns)|; A = |Ac + jAs|, (1)

where A is the noise-free amplitude and nc, ns are Gaussians
with zero mean and variance σ2. Though MRI data show
in general a large SNR, several methods for MRI denois-
ing have been proposed including wavelet shrinkage [2],
anisotropic diffusion [3], or maximum likelihood estima-
tion [4], among others. When it comes to DWI, the SNR
is typically much lower due to the strong attenuations intro-
duced by the diffusion gradients, leading to a well-known
bias in the quantitative parameters derived from Diffusion
Tensor Images (DTI), such as the Mean Diffusivity (MD) or
the Fractional Anisotropy (FA) [5]. Accordingly, denoising
of DWI volumes has grabbed a great deal of attention in the
recent literature. Filtering methods are usually based on the
statistical properties of Rician noise, which involve signal-
dependent moments that yield to non-linear and iterative
processing [6]. For this reason, it is often advantageous to
work with the squared envelope M2, whose moments are
trivially related to the signal A and the power of noise σ2 [7]:

A2 = E{M2}−2σ
2;

A4 = E{M4}−8σ
2E{M2}+8σ

4. (2)

A number of denoising schemes for DWI have been designed
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with this philosophy [8], [9], aimed at the simultaneous
fulfillment of three requirements: 1) An appropriate filter
should account for the very low SNR inherent to DWI data;
2) It should combine the information present in all channels
to reveal the overall structure of the white matter, and 3) It
should preserve the fine details of small fiber bundles. As
an example, the Wiener filter proposed in [10] uses the first
two moments of M2 to linearly estimate A2:

Â2 = 〈M2〉−2σ
2 ·1+CA2M2C−1

M2M2

(
M2−〈M2〉

)
, (3)

where the N × 1 vectors A2 and M2 comprise the corres-
ponding A2 and M2 from each DWI channel, 1 is an N×1
vector of all ones, and 〈·〉 denotes the sample average in
a neighborhood of the filtered voxel, which approximates
the true expectation E{·}. The covariance matrices CA2M2

and CM2M2 , which are also estimated from sample averages,
represent the correlations between the different DWI chan-
nels, i.e. the anatomy of the white matter hidden behind their
joint information. At the same time, the linear term in M2

accounts for the signal variability in the neighborhood, hence
avoiding an excessive structural blurring. Indeed, eq. (3)
may be seen as a general form for many DWI filtering
techniques: in case CA2M2C−1

M2M2 is assumed diagonal, inter-
channel dependencies are neglected and we get the channel-
by-channel LMMSE filter in [8]. Going a step beyond, the
linear correction may be neglected assuming CA2M2 = 0, and
we get the so-called Conventional Approach (CA) in [7].
However, this is too rough an assumption unless we have
a homogeneous anatomy inside the whole neighborhood,
and otherwise the image structure will become blurry. To
palliate this artifact, the signal variability may be dramati-
cally reduced by using the Unbiased NLM (UNLM) scheme,
implying that only those voxels whose structure is similar
enough are averaged in eq. (3) [9], [10].

In Section II we present an estimator for A2 that combines
the better noise removal ability of the LMMSE model with
the better ability to preserve details of UNLM (see [10]). The
statistical model in Section II-A inherits from eq. (3), but the
sample moments are computed as non-homogeneous, NLM-
like mixtures based on a novel structural DWI similarity
measure introduced in Section II-B. Fine details are better
preserved since the signal variability is accounted for through
both CA2M2 and the shaped vicinities based on the NLM idea.
Conversely, noise removal is also more efficient since all
the channels are mixed together through CA2M2 , and NLM
weights allow using larger vicinities. These assertions are
supported by the experiments in Section III, while the pros
and cons of our proposal are discussed in Section IV.
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Fig. 1. (a) An axial slice of the noise-free phantom used in Section III (left), together with the noisy phantom (middle) and the RGB anatomical map
obtained from the latter. An isotropic search window is centered at a voxel in the Corpus Callosum (red), and the voxels weighted with non-negligible
factors highlighted in green. (b) Standard deviation of a Rician variable as a function of the standard deviation in the complex domain.

II. THE JOINT ANISOTROPIC LMMSE FILTER FOR DWI

A. Linear filtering model

According to the previous discussion, we compute Â2

from M2 as the linear estimator with minimum squared error:

Â2 = 〈M2〉N −2σ
2 ·1+CA2M2C−1

M2M2

(
M2−〈M2〉N

)
, (4)

where the sample moments 〈·〉N are now computed in an
anisotropic vicinity N as discussed in Section II-B. CA2M2

and CM2M2 may be represented in different ways: 1) The
estimation proposed in [6] is assumption-free. 2) In [8], it
is assumed that no correlations exist between the channels.
3) As opposed, we assume the channels are completely
correlated, so the covariance matrices become [10]:

CA2M2 =ς〈A2〉N 〈A2〉TN ; (5)
CM2M2 =ς〈A2〉N 〈A2〉TN +4σ

2diag(〈A2〉N )+4σ
4IN ,(6)

where ς = 1
N ∑

N
i=1(〈A4

i 〉N −〈A2
i 〉2N )/〈A2

i 〉2N . This assump-
tion properly accounts for the joint information in the DWI,
and grants also an efficient computation and inversion of
CA2M2 . In practice, we split the estimates Â2 in those
channels corresponding to either baselines or actual DWIs.

B. From anatomical contents to adaptive neighborhoods

With the same philosophy behind the NLM, we define the
moments of I(xi) at xi inside a shaped vicinity N as:

〈I(xi)〉N =
1
Z ∑

l∈N
exp
(
−d(xi,xl)

h ·α2

)
I(xl), (7)

where d(xi,xl) is a distance between the voxels xi and xl
that measures their structural similarity, α2 is the expected
value of such distance for similar voxels, and h is a free
parameter. The normalization constant Z assures the mean
value of I is preserved. The definition of d(·, ·) may also
vary, but it should fulfill certain conditions:
• As shown in Fig. 1(a), an isolated DWI channel cannot

reveal the white matter structure, even when the SNR is
very high. For this reason, distances based on the actual
anisotropy of the white matter like [11] are preferable
to those based on the raw DWI channels, like [9], [10].

• E {d(·, ·)} must be statistically characterized to compute
α2 [12], so non-linear channel combinations like that
in [11] are less desirable than linear mixtures.

To meet these requirements, let us define three unit, mutually
orthogonal vectors (we use the canonical basis), {uR,uG,uB},
and let us assume the unit gradient used to acquire the i-
th DWI is gi. A RGB image is formed by combining the
DWI channels Mi depending on their orientations; for the R
channel (and conversely for the G and B channels):

R(x) =
N

∑
i=1

wRi ·Mi(x), wRi = (
N

∑
i=1
|uT

Rgi|)−1|uT
Rgi|. (8)

Contrarily to [11], this anatomical map in Fig. 1(a) robustly
characterizes both the anisotropy and the directionality of the
white matter, even when computed from low SNR data. The
variance of each RGB channel is easy to compute, since it is
a weighted sum of N independent Rician variables. Though
the variance ζ 2 of a Rician variable M is not trivially related
to σ2 in eq. (1), see Fig. 1(b), for a reasonable SNR (A/σ > 2
in the figure) we may set ζ 'σ . From [12], and assuming the
RGB channels are roughy uncorrelated, we write in eq. (7):

d(xi,xl)

α2 =
1

σ2
dR(xi,xl)+dG(xi,xl)+dB(xi,xl)

∑
N
i=1 w2

Ri
+∑

N
i=1 w2

Gi
+∑

N
i=1 w2

Bi

, (9)

where dR(·, ·), dG(·, ·), and dB(·, ·) are computed as follows.

C. Computation of the structural similarity in the RGB map

In the original NLM, the d(xi,xl) are computed as the
Euclidean distances between the vectors of voxels taken from
vicinities centered at xi and xl . We prefer the method in [12],
which is both computationally efficient and robust to noise:
once the mean value R(x) and derivatives Rk(x) = ∂

∂xk
R(x)

(conversely for G and B) of each channel are computed using
the least squares method proposed in [12], we define:

dR(xi,xl) =

∣∣R(xi)−R(xl)
∣∣2

h/heff
+

3

∑
k=1

δk
|Rk(xi)−Rk(xl)|2

h/heff
, (10)

where the constant δk is related to the discretization of the
derivatives computation, and the term h/heff accounts for the
effective reduction of the power of noise in the mean value
and gradients of the image, see [12] for details.

508



1 2 3 4 5 6
1

1.05

1.1

1.15

1.2

1.25

Filtering radius (R)

R
M

S
E

/m
in

 {
R

M
S
E
}

R

UNLM

1 2 3 4 5 6
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Filtering radius (R)

jLMMSE

1 2 3 4 5 6
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Filtering radius (R)

jaLMMSE

10 20 30 40 50 60 70 80
10

20

30

40

50

60

70

80

σ

R
M

S
E

Noisy
UNLM
jLMMSE
jaLMMSE

10 20 30 40 50 60 70 80
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

σ

S
S

IM

Noisy
UNLM
jLMMSE
jaLMMSE

10 20 30 40 50 60 70 80

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

Q
IL

V

Noisy
UNLM
jLMMSE
jaLMMSE(a) (b)

Fig. 2. (a) Normalized RMSE in the DWIs (inside an FA mask) as a function of the isotropic filtering radius used for each algorithm. Dashed lines
correspond to each power of noise considered, from very high (green) to very low (red) SNR. Solid lines represent mean values for all powers of noise.
(b) Quality indices (inside the FA mask) as a function of the input power of noise for each algorithm (with the optimum filtering radius inferred from (a)).

III. EXPERIMENTS AND RESULTS

In this Section we compare three different filters for DWI:
1) In case we assume CA2M2 = 0 in eq. (4), we get an UNLM
filter; we have used h = 1.2 in all cases after [10], [12]. 2) If
we set h=∞ with the whole eq. (4), we get the isotropic joint
LMMSE (jLMMSE) in [10]. 3) The model in eq. (4), with
a value of h = 2.0 (empirically fixed) is our new proposal,
so-called joint anisotropic LMMSE (jaLMMSE). We use a
test bed inspired in the noise-free phantom in [13]: starting
from a DWI data set (60 gradients, 1 baseline, matrix: 128×
128×66, isotropic resolution 2×2×2 mm3) with a dual b-
value of 800 s/mm2 and 1000 s/mm2, we filter each volume
with the UNLM technique described in [10]. The logarithm
of the signal at each voxel is fitted in the basis of Spherical
Harmonics up to order 4, and a synthetic logarithmic signal at
b = 900 s/mm2 is averaged from both original b-values. This
signal is sampled at 15 evenly spaced gradient directions, and
used to compute the final clean DWI shown in Fig. 1(a). The
noisy M are obtained from A as in eq. (1) for different σ . To
assess the quality of each filtered image, we compute three
indices between them and the phantom: the Root Mean
Squared Error (RMSE), the Structural SIMilarity (SSIM,
[14]), and the Quality Index from Local Variance (QILV,
[15]). While the former two sum up how well noise is
removed, the latter is more sensitive to over-blurring artifacts.

In the first experiment we aim at finding the optimal size
of the vicinities N to be used by each algorithm, as depicted
in Fig. 2(a). For each input σ , we compute the output RMSE
versus the filtering radius (isotropic, as the resolution of the
phantom itself). This curve is normalized by the minimum
RMSE achievable in each case. While jLMMSE requires
very small radii (because it uses isotropic neighborhoods),
the other methods are more robust to large vicinities (since
they are adaptive to the anatomy). In particular, jaLMMSE

may use arbitrarily large radii since it preserves the structures
by two means: the computation of moments in shaped
neighborhoods, and the LMMSE linear correction in eq. (4).

For the optimal filtering radii inferred from Fig. 2(a) for
each algorithm, we show in Fig. 2(b) the output qualities
obtained as a function of the input σ . The RMSE and SSIM
values demonstrate that jaLMMSE is a more efficient noise
removal engine than the other two approaches for all the
range of input SNR. As reported in [10], UNLM is preferable
to jLMMSE for small σ : in this case, the improvement in
the SNR does not compensate for the blurring introduced by
the isotropic jLMMSE computations. For larger (and more
realistic) values of σ , however, jLMMSE represents a better
trade-off between SNR improvement and blurring, and it
outperforms UNLM. If we look at the QILV index, indeed,
the response of jLMMSE is quite flat, meaning this index
is governed by the blurring the isotropic vicinities produce
in the output. Our jaLMMSE, however, exhibits the nice
capability of UNLM to preserve fine details for high SNR
(small σ ), and it better removes the noise for low SNR (high
σ ) than any other method. With regard to the QILV measure,
the LMMSE correction of jaLMMSE proves itself useful to
better preserve fine details in the output over the pure UNLM.

Finally, we have computed corresponding DTI volumes
from one of the images used to generate the phantom
(b = 1000 s/mm2), and from its filtered versions. We have
estimated FA histograms over partial segmentations of the
corpus callosum (cc) and the cingulum (cg), see Fig. 3:
While jLMMSE seems to negatively bias the FA due to
the increased partial volume effect casued by the isotropic
computations, jaLMMSE shows approximately the same FA
values as the noisy image (as expected for this SNR, see [5]).
On the contrary, UNLM overestimates the FA, as suggested
by the displacement of the histogram peak at the cc.
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Fig. 3. The corpus callosum and cingulum have been partially segmented (left) in a DWI data set with b = 1000 s/mm2 (middle; a) original, b) UNLM-
filtered, c) jLMMSE-filtered, d) jaLMMSE-filtered -compare the more effective noise removal of jaLMMSE over UNLM in the highlighted section-). A
DTI volume is obtained in each case using standard Least Squares, and histograms of the corresponding FAs computed for each segmented tract (right).

IV. DISCUSSION AND CONCLUSIONS

The joint anisotropic LMMSE filter for DWI provides a
nice trade-off between the dramatic improvement of the SNR
and the preservation of anatomical details. Specifically, it
is able to clean the DWI channels without introducing a
systematic bias in the FA. As compared to the joint LMMSE
in [10], it avoids mixing together different fiber bundles, or
even the background and the fiber bundles, maintaining the
anisotropy of the white matter. Compared to the pure UNLM,
it combines the information from all the DWI channels
producing a more effective noise removal. At the same time,
the LMMSE correction may keep visible fine details in
small tracts that might be otherwise blurred out by UNLM,
due to the raw estimation of the signal as its second order
moment. Its computational load is still fairly reasonable,
thanks to the efficient computation of the NLM weights
based on distances in the features space [12]. A complete
C++ implementation may be downloaded from http://
www.nitrc.org/projects/jalmmse_dwi.

The current scheme may also be further developed in
several ways. First, we have considered a stationary Rician
model for the noise pattern (i.e., a constant value of σ for
the entire Field of View), which may not be a realistic as-
sumption with parallel acquisitions or Echo-Planar imaging.
Yet, Rician statistics may be easily generalized to a non-
central Chi model to tackle certain multi-coil reconstruction
procedures. Finally, the entire evaluation of our proposal has
been intended for DTI-like data sets. With High Angular Res-
olution volumes, which are usually acquired with larger b-
values, the optimal parameters inferred from the experiments
may be no longer appropriate. Indeed, an adaptive value of
h fitted to the SNR and the level of detail at each voxel is an
interesting improvement, together with alternative designs of
the projection weights to compute the RGB anatomical map.
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