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Abstract— During birth, timely and accurate diagnosis is 

needed in order to prevent severe conditions such as birth 

asphyxia. The fetal heart rate (FHR) is often monitored during 

labor to assess the condition of fetal health. Computerized FHR 

analysis is needed to help clinicians identify abnormal patterns 

and to intervene when necessary. The objective of this study is to 

apply Genetic Algorithms (GA) as a feature selection method to 

select a best feature subset from 64 FHR features and to 

integrate these best features to recognize unfavorable FHR 

patterns. The GA was trained on 408 cases and tested on 102 

cases (both balanced datasets) using a linear SVM as classifier. 

100 best feature subsets were selected according to different 

splits of data; a committee was formed using these best 

classifiers to test their classification performance. Fair 

classification performance was shown on the testing set 

(Cohen’s kappa 0.47, proportion of agreement 73.58%). To our 

knowledge, this is the first time that a feature selection method 

has been tested for FHR analysis on a database of this size.  

 

I. INTRODUCTION 

During labour, a baby’s oxygen supply can be reduced due 
to the stress caused by uterine contractions. Unable to cope 
with such situation, some babies suffer from birth asphyxia 
(suffocation), which may lead to seizures, permanent brain 
damage or even death in severe conditions. Cerebral palsy 
occurs in approximately 2 cases per 1,000 births, of which 
birth asphyxia accounts for 10-30% [1]. In clinical practice, to 
prevent birth asphyxia, it is crucial to carry out timely 
intervention to assist delivery immediately. On the other hand, 
interventions such as Caesarean sections, forceps and 
ventouse deliveries may cause complications, thus these 
interventions are best avoided when possible. Therefore, 
timely and accurate diagnosis of birth asphyxia is essential to 
minimize damage while avoiding unnecessary interventions. 

In order to monitor the condition of fetal health, the fetal 
heart rate (FHR) and uterus contracts are electronically 
recorded during labor on a paper strip called a cardiotocogram 
(CTG).  The complicated CTG patterns are usually assessed 
by eye, which is tedious, error-prone and associated with low 
reproducibility due to high inter- and intra-observer variability 
[2, 3]. It has long been recognized that computerized analysis 
of the CTG in fetal monitoring has potential for improving 
decision making for interventions. Therefore, computerized 
analysis for CTG patterns has become a significant and 
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pressing need. Currently, our group is developing a 
computerized FHR analysis system (OxSys) to automatically 
recognize unfavorable intrapartum FHR patterns.  

At present, the OxSys system contains 64 features [4-7]. 
Previous studies have shown that the combination of different 
FHR features can be better than using the features 
independently [6, 7], revealing the potential of selection and 
integration of these features to provide a better predictor than 
using individual features. On the other hand, the number of all 
possible combination of the 64 features used here is 
2

64
=1.8 10

18
, which is too big for an exhaustive search. Thus 

feature selection methods need be applied to the task of 
selecting a subset of FHR features.  

Amongst the different approaches, Genetic Algorithms 
(GA) are known for their competitive exploration ability, i.e. 
the ability to explore the feature space as widely as possible. 
They can be powerful and efficient global optimisers in 
various fields of data analysis [8]. 

The aim of this study is to apply Genetic Algorithms (GA) 
as a feature selection method to select a best feature subset and 
to integrate these best features to recognize unfavorable FHR 
patterns. In this way, the system could be able to automatically 
predict adverse labor outcome, in order to help the clinicians 
make decisions on interventions during labor. 

II. DATA 

A. Data selection criteria 

The process of labor is divided into three stages according 
to different physiological activities. The first stage is 
identified as frequent regular contractions with less than 10 cm 
cervix dilation. The second stage is identified as descent of the 
baby’s head through the mother’s pelvis, with cervical dilation 
of 10 cm. The third stage is identified as the delivery of the 
placenta. To ensure that all cases are equally selected at 
comparable stages of labor, only the last 30 minutes of second 
labor stage (before birth) were examined, since the second 
stage has more drastic changes in FHR due to uterus 
contractions. The assumption of this study is that, in the last 30 
minutes of second labor stage, adverse labor outcome related 
to fetal heart rate are detectable using CTG. Therefore, in this 
study, included were only CTG records taken directly after the 
onset of pushing with fair signal quality. From 107,614 
deliveries in John Radcliffe hospital between 20 Apr 93 - 28 
Feb 08 (currently world’s largest FHR database), 7,568 
recordings were selected using these criterions. The details of 
selection criterions can be found in a previous study [6]. 

B. GA training set and testing set 

Adverse outcome in this study was defined as acidosis at 
birth (clinically defined as umbilical arterial pH   7.05) [9]. 

Feature Selection for Computerized Fetal Heart Rate Analysis using 

Genetic Algorithms* 

Liang Xu, Antoniya Georgieva, Christopher W. G. Redman, Stephen J. Payne 

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 445



  

Acidosis at birth is one of the clinical diagnosis conditions of 
birth asphyxia [6]. The dataset is heavily imbalanced: only 
255 out of 7,568 cases have an adverse outcome (3.37%). 
Training a classifier using the entire dataset will result in a 
high classification performance with low prediction power. 
Therefore, a balanced dataset was created to train the 
classifier. 

 From the total set of 7,568 cases, 255 cases were adverse 
outcome cases. Normal outcome was defined as 7.27   
arterial pH   7.33 and no form of compromise (959 cases). To 
create a balanced dataset of 50% normal outcomes and 50% 
adverse outcomes, 255 cases were randomly selected out of 
the 959 normal outcomes. Therefore, the dataset used in this 
study consists of 510 cases, with 255 normal outcomes and 
255 adverse outcomes.  

In these 510 cases, 80% (204 normal cases and 204 
adverse cases) were selected randomly for the feature 
selection process using GA. The remaining 20% (51 normal 
cases and 51 adverse cases) were used as a testing set to 
evaluate the performance of the features selected by the GA. 
In addition, in each GA run, a training set itself was separated 
into a training set and a validation set (70%-30%). To avoid 
confusion, the data used in GA were referred to as the GA 
training set, and the separated testing set used to evaluate the 
performance of GA was referred to as the testing set (Fig. 1). 
The widely accepted ‘rule of thumb’ [10] was followed that at 
least 10 training samples per input feature of each class are 
needed. Therefore, the maximal number of features that could 
be selected is 14. 

 

Figure 1.  Conformation of all 510 cases used for GA. 

III. METHODS 

A.  Basic framework of GA 

The framework of the method is adapted from the 
traditional GA [8, 11]. The GA method consists of five major 
steps: 

(1) Generation of the population 

(2) Selection based on fitness value 

(3) Reproduction (crossover and mutation) 

(4) Accepting of the new generation 

(5) Checking the stopping criterion 

The population size was set to 100. Ranking strategy was 
used as the selection strategy, where the individuals ranking in 
the best 50% fitness were selected to create offspring. 
single-point crossover with a proportion of 0.8 and 

single-point mutation with a proportion of 0.2 were applied to 
every generation to generate the next population. The elitist 
selection was set to 2, i.e. the best two individuals of the 
current generation were included in the next population. The 
maximum number of generations with the same best fitness 
value was set to 20. The maximum number of generations was 
set to 200. The number GA run with different initial conditions 
(same data splits) was set to 100. Each of these parameters was 
optimized based on preliminary tests to ensure that the output 
of GA was consistent at the minimum cost of computation 
time. 

B. Fitness function 

In the GA, each genome (individual) was given a fitness 
value by the fitness function. In this study Cohen’s kappa 
value [12] was used as the fitness evaluation of the classifier. 
Kappa is a statistical measure of agreement between predicted 
and actual results. It is a more robust measure than simple 
proportion of agreement, since kappa takes into account that 
agreement occurs by chance. 

To evaluate the agreement between predicted and actual 
results, the data in the GA training set were randomly split into 
a training set and a validation set as mentioned before. A 
classifier was then trained from the training data using the 
feature subset, and the predictions were compared to actual 
results on validation set. 

The performance of the classifier will vary depending on 
how the training set is drawn from the GA training set. In 
order to improve the classifier’s ability of generalization, 
cross-validation is necessary. Due to the limited size of the 
data, repeated random sub-sampling strategy is used. Before 
each run of the GA, the data are randomly split into ten 70% 
training-30% validation sets. For each genome, the classifier 
was trained respectively by each of the ten training sets. The 
performance on each set was recorded as the kappa value 
comparing predictions and actual results of its testing set. The 
median of these ten kappa values was then recorded as the 
fitness value of the genome. By doing this, it is ensured that 
the convergence of GA is less associated with the splitting of 
data. 

C. Classifier 

The classifier used in this study is a linear SVM. The 

support vector machine (SVM) is widely used in data analysis 

due to its intuitive definition and simple implementation [13]. 

The SVM constructs a hyperplane or a set of hyperplanes to 

separate data points, in order to achieve the largest distance to 

the nearest training points of any class. Intuitively, a larger 

functional margin means lower generalization error of the 

classifier. The detailed principle of the linear SVM can be 

found in [14]. The method used to find the separating 

hyperplane is the Least Squares method. Linear SVM 

algorithms were taken from LIBSVM [15]. 

IV. RESULTS 

A. Classification performance 

The GA was run 100 times, and the best classifier for each 
run of the GA was applied independently on the testing set. 
The agreement of the output for each classifier was measured 
by a kappa value comparing the prediction of these classifiers 
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and the actual result. The classification performances on both 
the GA training set and the testing set are shown in Fig. 2.  

 

Figure 2.  The classification performance (kappa) for different classifiers 

over 100 runs on GA training set and testing set. 

The 100 best classifiers described above were then used to 
form a voting committee. For each case in the testing set, the 
mode of the committee voting was taken as the prediction. The 
classification performance is shown in Table I, compared with 
three other frequently used feature selection methods: 
Random Forest using classification method (RF-C), Random 
Forest using regression method (RF-R) and Least Absolute 
Shrinkage and Selection Operator (LASSO) [16, 17]. These 
methods are known for their classification accuracy, but they 
either can’t give a specific best set of feature (Random Forest), 
or is hard for interpretation (LASSO). It is shown here that the 
classification performances of the GA are comparable, or 
slightly better than, the performances of these classical feature 
selection methods. In addition, the selected feature subset 
performs better than using all 64 features. 

TABLE I.  CLASSIFICATION PERFORMANCE (TESTING SET) AND 

COMPARISON WITH OTHER FEATURE SELECTION METHODS 

Method Sensitivity Specificity Kappa 
Proportion of 

agreement 

All 64 

features 
63.20% 66.83% 0.30 65.09% 

GA 66.83% 81.13% 0.47 73.58% 

RF-C 67.92% 77.36% 0.45 72.64% 

RF-R 64.15% 73.58% 0.38 68.87% 

LASSO 66.83% 78.25% 0.45 72.64% 

 

B. Feature frequency 

GA was run 100 times with different splits of 
training-validation data, thus there are 100 sets of best 
features. The importance of each feature can be assessed by 
the frequency of the feature being selected in the 100 best 
feature subsets. Table II shows the feature importance ranking 
of the ten most frequently selected features. It shows that some 
features could be important regardless of different splits of 
training-validation sets. For example, Feature No.61 (Phase 

Rectify Signal Averaging – DC component) was selected for 
almost all best feature subsets. The feature frequency, 
indicating the importance of different features, could be very 
useful for future reference. It will also be very helpful for other 
feature selection methods such as forward selection and 
backward elimination. 

TABLE II.  MOST FREQUENTLY SELECTED FEATURES IN 100 RUNS OF 

GA USING LINEAR SVM 

Ranking 
Feature 

index 
Feature name 

Feature 

frequency (%) 

1 61 
Phase Rectify Signal 

Averaging –DC component 
98 

2 10 
Median of short term 

variability change tracker 
60 

3 48 Mutual information 51 

4 16 
Median of contraction 

duration 
46 

5 2 
Zero difference between 

neighbor points (%) 
41 

6 51 
Standard deviation of Sample 

Entropy 
37 

7 9 
Signal Stability Index of the 

residual FHR signal 
18 

8 50 
Mean of local Approximate 

Entropy 
18 

9 63 
Bivariate Phase Rectify Signal 

Averaging –DC component 
17 

10 58 
Interquartile range of the 

smoothed signal 
15 

V. DISCUSSION AND CONCLUSION 

Fetal Heart Rate (FHR) is used during labor to assess the 
condition of fetal health and assist diagnosis of birth asphyxia. 
The objective of this study was to find a best feature subset 
using feature selection methods. Clear and intuitive clinical 
interpretation is needed to assist the clinicians in decision 
making, thus a GA was chosen for its ability to explore the 
whole feature space and give a clear best feature subset. In 
addition, a linear SVM was chosen as the classifiers for GA to 
investigate the linear relationship between features and 
adverse outcome. To our knowledge, this is the first time a 
feature selection method was used in this large scale of FHR 
data (510 balanced cases).  

100 different best feature subsets were selected according 
to different splits of data, these different best feature subsets 
were used as a classifier committee. Given the lack of a gold 
standard and our limited ability to predict labor outcome with 
any tool or expert knowledge [18], the classification 
performance of the committee on the testing set is promising 
(Cohen’s kappa, 0.47, proportion of agreement 73.58%). This 
classification performance is better than previous studies on 
the similar dataset using an Artificial Neural Network on 
similar dataset, with kappa 0.28 on the testing set [6]. The 
classification performance of GA is comparable, or slightly 
better than to other feature selection methods using the same 
dataset.  

Feature No. 61 (Phase Rectified Signal Averaging– DC 
component), No. 10 (short term variability) and Feature No. 
48 (Mutual information are most frequently selected.  
Therefore, these features appear to be useful in predicting 
labour outcome when used in multivariate analysis. This 
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information will be very valuable for reference in future 
studies. Further investigation will be focused on the 
interpretation of these features in classifying labor outcomes. 

One limitation of this study lies in that it took only the last 
4 windows of 15 minutes length in the last 30 minutes of 
second stage. More information during the process of labor, 
especially time-series information, should be required and 
integrated into the classifier. There are also a number of 
additional clinical parameters that need to be studied, such as 
maternal infection, oxytocin augmentation, etc. [6]. The 
detailed clinical interpretation of the classifiers should be 
investigated with time series information, too.  

In addition, how to apply the classifier trained using a 
balanced dataset to the whole 7,568 cases is still a question. 
Analytical tools such as Event Rate Estimation (EveREst) plot 
could be used to examine the prediction power of the 
classifiers in terms of clinical situations [9]. 

The next step of the study is to apply the classifiers 
throughout the duration of labor, which will provide an 
objective measurement of fetal health condition during 
different stages of labor. Further studies will be carried on to 
estimate the risk of compromise, based on the classifier 
prediction and its patient specific time-series trend.  

In conclusion, Genetic Algorithms, as a feature selection 
method, was used for the first time to integrate and optimize 
the predictive power of various FHR features. The GA was 
trained on 408 cases and tested on 102 cases (both balanced 
datasets) using linear SVM as classifier. Fair classification 
performance was shown on the testing set (Cohen’s kappa 
0.47). Based on these results, it can be concluded that GA can 
be successfully applied to FHR features to select best feature 
subsets and to optimize their predictive power. More analysis 
and clinical interpretation of the classifiers are necessary for 
further work. 
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