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Abstract— The performance degradation for session to ses-
sion classification in brain computer interface is a critical
problem. This paper proposes a novel method for model
adaptation based on motor imagery of swallow EEG signal for
dysphagia rehabilitation. A small amount of calibration testing
data is utilized to select the model catering for test data. The
features of the training and calibration testing data are firstly
clustered and each cluster is labeled by the dominant label of
the training data. The cluster with the minimum impurity is
selected and the number of features consistent with the cluster
label are calculated for both training and calibration testing
data. Finally, the training model with the maximum number of
consistent features is selected. Experiments conducted on motor
imagery of swallow EEG data achieved an average accuracy
of 74.29% and 72.64% with model adaptation for Laplacian
derivates of power features and wavelet features, respectively.
Further, an average accuracy increase of 2.9% is achieved with
model adaptation using wavelet features, in comparison with
that achieved without model adaptation, which is significant at
5% significance level as demonstrated in the statistical test.

Index Terms— model adaptation, clustering, cluster impurity,
feature consistency

I. INTRODUCTION

Motor imagery is expected to improve the func-

tional recovery after stroke [1], hence motor imagery-

based brain computer interface has been used for stroke

rehabilitation[2][3]. The assumption is that motor imagery

activates similar pathways as that of executed movements.

Most machine learning methods work well with the as-

sumption that the training and testing data are drawn from

the same feature space or follow the same distribution [4].

However, this assumption is usually violated due to the

non-stationarity of the EEG signals. This is due to the

changes in the electrode locations and mental states of the

subjects with long duration of experiments; movements of

the eyes and muscles during experiments and the drying-

up of the gels. Most importantly, the non-stationarity is also

caused by the long breaks between two sessions, and the

visual feedbacks during online feedback sessions. Existing

methods for tackling the non-stationarity includes: covariate

shift adaptation [5], [6]. The effects of non-class related

non-stationarities in EEG during BCI sessions performed

with motor imagery tasks are analyzed, subsequently, the

parameters of a linear classifier without label information

are adapted [6]. “ReTraining” and “ReBias” are proposed to
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recalculate the decision boundary or adjust the bias for onine

feedback sessions [7] by utilizing the label information in

the feedback. The results show that the simple “ReBias” is

an effective method to correct the shift in session-to-session

classification without recomputing the decision boundary.

In this paper, we assume that a small amount of online

calibration data is available to be used to adapt the model

obtained from calibration for the classification of testing data.

For this, the motor imagery of swallow EEG data collected

are used to test the algorithm.

Dysphagia often occurs in acute stroke patients [8],

which is the inability to swallow or difficulty in swallow-

ing caused by stroke or other neuro-degenerative diseases

[8]. Traditional methods used to treat swallowing disorders

are ususally based on dietary changes, thermal stimulation,

tongue strengthening exercises and pharyngeal maneuvers.

Recently, neuro-muscular stimulation has been employed

[9]. Strength training exercise may drive neural plasticity

changes and muscular adaption [10]. In general, the adaption

only occurs when the exercise efforts beyond the level of

usual activity. An effortful swallow maneuver and tongue-

holding maneuver can be used to elicit increased muscular

effort and increase muscular work. These methods require

the personal assistance from the therapists, hence, repetitive

training requires high cost. We propose to use motor imagery

of swallow to train the subjects in rehabilitation. For this,

detection of motor imagery of swallow is important. This

paper addresses the non-stationarity of the EEG signals

between two offline sessions, or from offline calibration

session to online feedback session. We propose a novel

method for transfer learning of EEG signals in different

sessions by considering the consitency of features between

the training and calibration testing data. The assumption

is that a suitable model can always be found to bring the

distribution of features of training and testing data close to

each other, so that a better performance can be achieved.

II. OUR PROPOSED METHOD

A. Feature Extraction Methods

Two methods are employed in feature extraction. The dual-

tree complex wavelet transform (DT-CWT) [11] is employed

in the first method due to its good localization in both time

and frequency, shift-invariant, better direction selectivity and

perfect reconstruction. Assume the EEG signal is decom-

posed into J levels. The features mainly consist of: power

energy of the coefficients (Fw), the phase information at each

level and direction (Fp), the coarse representation of the EEG
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signals (Fa), and the statistical features (e.g., mean, variance,

skewness and kurtosis) of power and phase. These features

are effective in detecting the event-related synchronization

and desynchronization (ERS/ERD) in brain EEG rhythms

during preparation and performing motor imagery of swal-

lowing. The power (Fw
s,d) and phase (F

p
s,d) at level (s) and

direction (d) are given by

Fw
s,d =

ns
∑

i=1

A
f
s,d(i) (1)

F
p
s,d =

ns
∑

i=1

P
f
s,d(i) (2)

F a
s,d = CJ+1,d,1 (3)

where ns is the length of the coefficients at level s and

direction d; A
f
s,d and P

f
s,d are calculated by

A
f
s,d = (Cs,d,1)

2 + (Cs,d,2)
2 (4)

P
f
s,d = atan(

Cs,d,2

Cs,d,1 + ǫ
) (5)

where ǫ is a small constant used to prevent the denomi-

nator becoming zero; atan(x) is the arctangent of element

x; Cs,d,r, where s (s∈{4, 3, 2, 1}), d (d∈{1, 2}) and r

(r∈{1, 2}) denote level of decomposition, directions, and

real and imaginary parts of the complex coefficient Cs,d,r,

respectively. The “asymmetry” and “peakedness” of the

probability distribution of coefficients at level s and direction

d are measured by skewness (Skw) and kurtosis (Kur) by

Asw
s,d = Skw(A

f
s,d) (6)

P sw
s,d = Skw(P

f
s,d) (7)

Acu
s,d = Kur(A

f
s,d) (8)

P cu
s,d = Kur(P

f
s,d) (9)

These features are further normalized and concatenated as

the final features.

In the second feature extraction method, the band powers

of laplacian derivatives (LAD) of the chosen electrode are

used as the features. It is generated by subtracting the

powers of neighboring four or two electrodes from that

of the considered electrode, as illustrated in Fig. 1. Let’s

firstly denote the signal as: Se(k, n,m), where k=1,2,...,Nr,

n=1,2,...,Nc and m=1,2,...,Ns represent indexes of the trials,

channels and samples, respectively. The signal is firstly

divided into Nf frequency bands, starting from 4Hz to 44Hz,

with the bandwidth of each frequency and overlapping of two

frequency bands as 4Hz and 2Hz, respectively. The signal

is band-pass filtered by Chebyshev filter, with the resultant

filtered signal denoted as Sf . The band power for the kth

trial, nth channel in frequency band fs is calculated by

Pw(k, n, fs) = 10 ∗ log10(

Ns
∑

m=1

Sf (k, n,m) ∗ Sf (k, n,m))

(10)

Let’s denote the location indexes of the current processing

electrode and its neighboring electrodes as: ni and nij ,

Fig. 1. Illustration of the laplacian derivatives of power features for
channels “FC3” and “CP4”’ (4 neighbors), and “TP7” and “FT8”
(2 neighbors).

where j=1, 2,...,q denotes q neighboring electrodes. The

LAD power of the current electrode is calculated by

P d
w(k, ni, fs) = Pw(k, ni, fs)− P

n
w(k, n̂ij , fs) (11)

Pn
w(k, n̂ij , fs) =

1

q

q
∑

=1

Pw(k, nij , fs) (12)

P̄ d
w(k, ni) =

1

Nf

Nf
∑

fs=1

P d
w(k, ni, fs) (13)

The final LAD power features (P̄ d
w(k, ni)) are the averaged

power features across frequency bands.

B. Model Adaptation

The non-stationarity of the EEG signals leads to poor

performance in session-to-session classification. Let’s firstly

assume that training data are partitioned into different par-

titions. Without loss of generality, the different partitions

produced during cross-validation in calibration stage are

utilized. The training model generated based on the r times

and n folds cross validation (denoted as Mdl) is given by

Mdl(r, n) =Mg(Fa, Itr(r, n), Ite(r, n)) (14)

where Itr(r, n) and Ite(r, n) denote the indexes of the

training and testing data in cross-validation, respectively; Fa
is feature vector and Mg() is used to generate the train-

ing models based on the random partitions for subsequent

optimal model selection. Two assumptions are made: 1) a

suitable model can always be found to bring the distribution

of testing data close to that of a selected subset of training

data. 2) a small amount of labeled calibration testing data

(e.g., 10-40 trials) collected on the same day as that of the

testing data are available. The model is selected by measuring

the feature consistency between the training and calibration

testing data, in a cluster that is of minimum impurity. The

detail steps for model selection are described as follows.

1) Cluster the whole set of features (Ft) into two clusters

such that the within cluster errors are minimized. K-means

clustering is chosen and the indexes of the ith cluster (Ic(i))
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are obtained by

Ic(i) = arg min
Cs

nc
∑

i=1

∑

Ft(j)∈Cs(i)

||Ft(j)− us(i)||
2 (15)

where Cs={Cs(1),Cs(2),...,Cs(nc)} and us(i) denote the

total set of clusters and the feature mean of the ith cluster; j

is the index of the feature vector Ft, where Ft is the feature

set consisting of the training data from partition (r, n) and

features of the calibration testing data, i.e., Ft=Ftr(r, n)||Ftc;

Ftc denotes the features of online calibration testing data.

2) Calculate the number of features in class “k” for training

(Nk
tr) and calibration testing data (Nk

te) in ith cluster by

Itr(i, k) = Itr(i)|(Ytr(Itr(i)) = k) (16)

Nk
tr(i) = |Itr(i, k)| (17)

Ite(i, k) = Ite(i)|(Ytr(Ite(i)) = k) (18)

Nk
te(i) = |Ite(i, k)| (19)

where k={0, 1} denotes class “0” and “1”; Itr(i, k) and

Ite(i, k) denote the feature indexes in kth class of ith cluster

for training and calibration testing data, respectively; Ytr(i)
and Yte(i) are class labels in cluster i for training and

calibration testing data, respectively; |x| gives cardinality.

3) Computer the dominant label (Lc(i)) for cluster i based

on the majority of class labels of training data by

Lc(i) =

{

0 if N0tr(i) ≥ N
1
tr(i)

1 otherwise
(20)

4) Calculate the number of consistent features for training

(N c
tr) and calibration testing (N c

te) data, which is given by

N c
tr(i) = Nk

tr(i)|Ytr(Itr(i, k)) = Lc(i) (21)

N c
te(i) = Nk

te(i)|Yte(Ite(i, k)) = Lc(i) (22)

5) Calculate cluster impurity of the ith cluster (CI(i))
based on the numbers of features in each class of the training

data, which is given by

CI(i) =
min(N0tr(i), N

1
tr(i))

max(N0tr(i), N
1
tr(i))

(23)

obviously, CI(i)∈[0 1] always holds.

6) Repeat steps 2 to 5 till all the clusters are processed.

The cluster with the minimum impurity in each iteration is

chosen by

î = arg min
i
(CI(i)) (24)

Thereafter, the total number of consistent features in the

chosen cluster (̂i) between training ((n, r)th model) and

calibration testing data Nc(̂i, n, r) is given by

Nc(̂i, n, r) = N
c
tr (̂i) +N

c
te(̂i) (25)

7) Finally, the model that has the maximum consistent

features between training and calibration testing data is

selected by

(n̂, r̂) = argmax
(n,r)

(Nc(̂i, n, r)) (26)

It should be noted that all the models are generated during the

training stage. The best model is selected to better classify

the testing data.

III. EXPERIMENTAL PROTOCOL AND RESULTS

The experiments consist of two tasks, i.e., motor imagery

of swallow (MI-SW) and idle. In motor imagery of swallow,

the subjects are instructed to imagine swallowing a cup of

water, or a cup of juice, some bolus or pureed food, etc.

The subjects are advised not perform any task and not to

close their eyes in idle state. 10 healthy subjects without any

history of respiratory, swallowing or neurological disorder

participated in the experiments. Each session consists of

two runs and each run consists of 40 trials for each action,

yielding a total of 160 trials per session. The timing scheme

is shown in Fig. 2. A resting state shown by a progress

bar is firstly appeared on the black screen. A short acoustic

tone was presented at 0s, followed by a preparation of 2s

shown as “+”. After that, the cue in the form of a virtual

character for swallowing or a filled circle for idle will be

shown for 3 seconds. With the disappearing of the visual

cue, the subject will start to perform required action for 12

seconds. At the end of each trial, there will be 6 seconds

rest time. Each trial lasts for 23 seconds. The EEG and EMG

Fig. 2. Experimental protocol for motor imagery of swallow.

data are bandpass filtered between 0.5Hz and 100Hz, and the

sampling rate was set to 250Hz. Four channels of HEOL,

HEOR, VEOU and VEOL are used for EMG recording by

taping the two pairs of electrodes beneath the skin of the

submental and infrahyoid muscle groups. The EMG signal

is used to monitor the muscle movements of the subjects.

The other 32 channels are used for EEG recordings.

Experiments are conducted based on the motor imagery

of swallow EEG data for 6 selected subjects whose cross-

validation accuracies are above 62% in both sessions. To

test the session-to-session classification accuracy, the model

trained using features in one session is subsequently em-

ployed to classify the features in another session and vice

versa. Support vector machines with linear kernel is used

as the classifier. A small amount of calibration testing data

ranging from 10-40 trials are employed to select the model,

which is subsequently used to classify the rest of testing data.

The results of using both wavelet features and LAD power

features are shown in Table I. It is noted that the best time

segment of 2 seconds are selected from 7 non-overlapping

time segments in the interval of [2.5 10.5]s (from onset

of action/idle). The results shown in the table demonstrate

the effectiveness of our proposed feature consistency-based

model selection technique. An average accuracy increase

across subjects of 2.9% is achieved using wavelet features.

Further, the use of model adaptation yields all 12 best

performance for 6 subjects in 2 sessions as shown in boldface
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TABLE I

SESSION-TO-SESSION CLASSIFICATION ACCURACIES FOR MOTOR IMAGEY OF SWALLOW WITH/WITHOUT MODEL ADAPTATION

Power Features (Ass) Wavelet Features (Ass)
Sub./Sess Adaptation (trials) Sub./Sess Adaptation (trials)

No adaptation 10 20 30 40 No adaptation 10 20 30 40
lj/1 73.13 74.00 74.29 74.62 75.00 lj/1 71.25 72.00 72.14 76.15 74.17
lj/2 79.38 79.33 75.00 78.46 78.33 lj/2 75.63 76.67 76.43 74.62 75.00
hj/1 74.38 74.00 73.57 70.77 72.50 hj/1 75.63 74.00 72.14 75.38 77.50
hj/2 76.88 78.00 79.29 77.69 78.33 hj/2 78.13 82.00 80.00 83.85 82.50
cr/1 77.50 80.67 81.43 83.08 81.67 cr/1 77.50 80.67 82.14 83.08 82.50
cr/2 85.63 86.00 85.71 85.38 86.67 cr/2 81.25 84.67 82.86 84.62 85.83
wy/1 68.75 70.67 70.71 71.54 70.00 wy/1 69.38 72.67 73.57 74.62 72.50
wy/2 79.38 82.00 82.86 80.77 80.83 wy/2 68.75 68.67 67.14 70.00 68.33
cc/1 63.75 66.67 65.71 65.38 66.67 cc/1 56.25 58.67 60.71 56.92 57.50
cc/2 70.63 68.67 70.00 66.92 68.33 cc/2 60.00 61.33 60.00 63.85 65.00
mt/1 61.25 64.00 63.57 70.00 65.00 zy/1 61.88 64.67 67.14 66.15 67.50
mt/2 65.00 65.33 63.57 66.92 66.67 zy/2 61.25 63.33 61.43 60.77 63.33

Aas 72.97 74.11 73.81 74.29 74.17 Aas 69.74 71.61 71.31 72.50 72.64
Significance ** xx xx xx Significance ** xx ** **

P value 0.0292 0.246 0.215 0.0677 P value 0.0023 0.0686 0.0032 0.0006

Ass: Session-to-session accuracy (%), Aas: Average Accuracy across subjects. The best performance for each subject
in each session is shown in bold. xx: not significant; **: significant

in the right portition of table. While using LAD power

features, 9 out of 12 achieved best performance using model

adaptation and an average accuracy increase of 1.29% across

subjects is achieved compared with that of without model

adaptation. Note that bias correction is carried out for LAD

power features-based session-to-session classification. The

bias is corrected so that the two-class proportion is closest

to class prior of testing data. A paired sample t-test at

significance level of 0.05 is conducted to test the hypothesis

that the accuracies obtained using model adaptation and that

obtained without model adaptation come from populations

with equal means. The results show that the hypothesis is

rejected for 3 out of 4 wavelet-based model adaptation and

not rejected for 3 out of 4 LAD power feature-based model

adaptaton, as shown in the last row of the table. This further

demonstrates the significant difference in accuracies obtained

by model adaptation using wavelet features compared those

achieved without moodel adaptation.

IV. CONCLUSIONS

This paper proposes a novel model adaptation method for

session-to-session classification of motor imagery of swallow

EEG signals for dysphagia rehabilitation. The whole set

of features including the training (from particular model)

and calibration testing data are firstly clustered. The cluster

that has the highest purity is selected and the number of

features for both training and calibration testing data that

are consistent with the dominant label in the cluster are

calculated. Finally, the model with the largest consistent

features is selected. Experiments conducted for EEG data

of 6 healthy subjects in two sessions achieve the average

accuracy of 74.29% and 72.64% using laplacian derivatives

of power features and wavelet features, respectively. Further,

significant average accuracy increase of 2.9% is achieved

with model adaptation using wavelet features compared with

that achieved without model adaptation.
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