
  

 

Abstract— Ambulatory electrocardiogram signals can be 

contaminated with various types of noise. Among these, 

electrode motion ‘em’ artifacts are considered particularly 

undesired as they can be mistaken for ectopic beats. 

Unfortunately, ‘em’ noise has proved difficult to tackle using 

ordinary filtering techniques. In this paper, we explore a novel 

filtering alternative, and show that it could be considered as a 

potential candidate for dealing with electrode motion artifacts. 

The proposed system is composed of two simple parts: a 

frequency filter and a time window, interconnected in series. 

The two components are designed such that the overall system 

operates optimally in the mean square error sense. 

Experimentation on signals obtained from the MIT-BIH 

database demonstrates the superiority of the above approach 

over optimal Fourier filtering. 

I. INTRODUCTION 

lectrocardiogram (ECG) signals are measurements of the 

bioelectrical activity of the heart and are widely used for 

the diagnosis of cardiovascular diseases. A particularly 

useful type of ECG is the one acquired during graded 

exercise assessment – stress testing – of the subject on a 

cardiovascular machine. Stress ECG is more likely to reveal 

certain underlying heart conditions in contrast to ECG 

recordings from a resting patient. On the other hand, the 

acquisition of ECG during the subject’s activity is a difficult 

task resulting in a signal corrupted with various types of 

interference. Electrode motion artifact [1] – annotated as 

‘em’ by clinicians on ECG recordings – is generally 

considered to be particularly unwanted among those 

interferences since it can pass as ectopic beats [4]. It is 

therefore crucial to remove this distortion prior to any 

clinical evaluation of the ECG. 

Filtering electrode motion artifact out of the ECG is a 

non-trivial task because this interference overlaps with the 

useful signal in both the time and the frequency domains [1]. 

Consequently, any basic pass-band type filter would not be 

able to suppress noise components and preserve useful 

signal information at the same time. This situation calls for 

some alternative denoising approach. Indeed, there has been 

ongoing research on this topic (e.g. see [2], [3] and 
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references therein). Most proposed methods have shown 

encouraging results, and come with their relative advantages 

and limitations; however, it can be argued that they all 

represent early-stage works. 

In this paper, we contribute to the above research effort by 

proposing a simple filtering system of two cascaded 

components; a filter operating in frequency and a window 

applied in time. To understand the rationale, and appreciate 

the potential benefits of such a scheme one can consider the 

following example. Assume two distinct signal elements 

submerged in noise as depicted in Fig.1. It can be observed 

that a significant amount of noise still resides within the 

horizontal strip defined by a Fourier filter’s cut-off 

thresholds. On the contrary, the combined effect of the 

frequency filter cascaded with a time window is that this 

signal is better isolated. Clearly, the overall system faces a 

higher signal-to-noise (SNR) ratio inside its pass band and is 

therefore in a more favorable position to suppress the 

overlapping interference. 

We investigate the above idea with the aim of producing 

an effective motion artifact suppression method for the ECG. 

In order to design the proposed two-stage filtering system 

we first formulate a mean square error (MSE) minimization 

problem, and we then derive its solution. Since the statistics 

of the motion interference are not known, provision has been 

made so that such knowledge is not a prerequisite to the 

design of the system. Experimentation with the proposed 

method was based on ECG data obtained from the MIT-BIH 

noise stress test database [4], [5]. Finally, to demonstrate the 

superiority of the cascaded system we carried out 

comparisons with an optimized Fourier filter, using the same 

set of data. 

II. DESIGN OF THE PROPOSED SYSTEM 

A. System Configuration 

The motivation behind this work is that by modifying the 

signal consecutively in the frequency and the time domains 

it may be possible to create a system that can better suppress 

interference as compared to a Fourier filter on its own. 

Drawing upon the simple example of Fig. 1 we may assume 

that the above is feasible, at least for signals with similar 

time-frequency characteristics. By examining the pseudo 

Wigner distribution of a noiseless ECG recording (Fig. 2a) it 

becomes apparent that this signal does consist of distinct 

higher-frequency elements (corresponding to QRS 

complexes) (Fig. 2b). Fig. 2c shows the same ECG segment 

corrupted by motion artifact noise of 6dB SNR.
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Figure 1. Joint time-frequency visualization of: (a) an assumed signal 

with two distinct elements embedded in noise; (b) a low-pass filtered 
version of the signal, and (c) the signal after its successive modifications by 

a frequency filter and a time window. 

It is evident that the useful waveform is now severely 

distorted, and that its frequency content is obscured across 

time (Fig. 2d).  

The configuration of the proposed system is shown in Fig. 

3. The signal is first passed through a linear time-invariant 

filter. The result is then multiplied with an appropriate time 

window. Since the input to the time window depends on the 

output of the filter, the two components cannot be designed 

independently. In the next paragraphs we describe how their 

joint optimization is implemented. 

B. Optimization of the Cascaded System Components 

For the purpose of this work, we denote our discrete 

signals as column vectors of size  . The goal of the filter is 

to find an estimate  ̂  which would be as close as possible to 

the ideal  . A natural optimality criterion is the mean square 

error (MSE), 

     ̂  
 

 
  ‖ ̂   ‖   ,                      (1) 

where ‖ ‖  denotes the 2-norm of the vector  , that is, 

‖ ‖     . Equation (1) can be approximated by taking 

the average error over M realisations of the data, 
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Figure  2. (a) A segment of a clean ECG signal, (b) the corresponding 

time-frequency plot, (c) the above segment corrupted with ‘em’ noise at 

6dB SNR, (d) time-frequency plot of the noisy ECG. 

where    is the i
th

 realisation of  . Further, based on the filter 

circuit of Fig. 3, the estimate  ̂ can be obtained as: 

                       ̂          ,                              (3) 

where   represents the noisy observations;   (NxN) and 

   (NxN) are the discrete Fourier transform (DFT) matrices 

which correspond to the Fourier transform and inverse 

Fourier transform, respectively;  (NxN) and  (NxN) are 

diagonal matrices whose elements are composed of the 

filter’s frequency response   and time window samples  , 

respectively. That is,                       and 

                     . The objective is then to 

determine the vector pair      and      that minimises (2). 

We are considering both      and      to be real-valued. 

By substituting (3) into (2) we obtain the following cost 

function: 
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so that (4) becomes  
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Figure 3. Proposed system configuration. 

 

It can be observed that since   is a diagonal matrix then, 

                                            , 

where   (NxN) is a diagonal matrix such that             . 

Now (5) can be further simplified as:  
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where   ̅(NxN) is equal to       . Expanding (6) yields: 
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since   and   are real-valued, the above equation becomes: 
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where the matrix      (NxN), the column vector     , and the 

scalar    are: 
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Finally, (7) can be expressed as: 
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We seek the vector    that minimizes (8), thus, the 

following equation must be solved: 

       

  
|
     

   .               (9) 

The derivative of the first term of (8) with respect to the 

vector   is in general equal to: 

 {     }

  
       

   ,      (10) 

Likewise, for the second term we have, 

 {  
  }

  
    .            (11) 

Based on (10) and (11), (9) can be re-written as  

(     
 )        .            (12) 

The system of N linear equations in N unknowns defined in 

(12) can then be solved to specify the designed filter’s 

frequency response   . 

In a similar manner we next solve for   . From (6), it can 

be observed that since   is a diagonal matrix then, 

   ̅     ̃  

where   ̃(NxN) is a diagonal matrix so that   ̅          ̃ . 

Now (6) can be re-written as: 
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Expanding (13) leads to: 
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Where the matrix      (NxN), the column vector     , and the 

scalar    are: 

       ̃
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Then, (14) can be expressed as: 
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The vector    that minimizes (15) can be obtained as the 

solution of the following linear system:  

(     
 )        .       (16) 

Since both (12) and (16) require knowledge of    and    

respectively, an iterative procedure is adopted as follows: 

Step 1: Initialize   and   to identity matrices and set 0k . 

Step 2: Solve for      using (12) 

Step 3: Based on the     , obtain      using (16) 

Step 4: Iterate Steps 2 and 3 until the solution converges. 

III. EXPERIMENTATION 

The ECG data used in this study were obtained from the 

MIT-BIH noise stress test database [4], [5]. The database 

contains two clean ECG records along with their 

corresponding distorted versions. The electrode motion - 

noise used in the distorted versions was acquired from the 

limbs of physically active volunteers during typical 

ambulatory recordings; it can thus be viewed as realistic 

motion noise. For each clean ECG record six different noisy 

versions are available, containing ‘em’ noise at six different 

SNR levels. 

We have segmented both the clean and the distorted ECG 

data into two-cycle epochs, and have used      randomly 

chosen epoch pairs in order to optimize the filtering system. 

The resulting system was then applied to previously unseen 

epochs.  

To demonstrate the validity of the original assumption, 

i.e. that the proposed two-stage system can outperform a 

single filter in enhancing the ECG, we have processed the 

same set of data with an optimized Fourier filter. This was 

designed using the derivations of Section II.B by simply 

setting W equal to an identity matrix, and solving the 

resulting set of linear equations (12). The same set of the ten 

y x̂
G

W
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epoch pairs used for the optimization of the two-stage 

system was also employed for determining the optimal 

single filter. 

To quantify the performance of the two compared 

approaches, the root-mean-square error (RMSE) and the 

normalized correlation coefficient (NCC) [6] were used. The 

NCC was calculated as, 

    
∑      ̂ 

      

√∑      ∑  ̂     
   

 
   

   ,                  (17) 

where N is the signal length,      is the desired signal and 

 ̂    is the filtered signal. The results of the experiments are 

listed in Table 1, where it is clear that the proposed method 

consistently outperforms the single-stage filter at all noise 

levels both in terms of the RMSE and the NCC measures.  

Figs. 4 and 5 show an example segment of a filtered ECG 

signal based on the above approaches for two different noise 

levels. 

IV. CONCLUSIONS 

We have investigated a filtering scheme for possible 

application to the removal of motion artifacts from stress 

ECG signals. The method is based on a two-stage system 

comprising a linear time-invariant filter and a time window. 

The overall system was designed based on the MSE 

minimization criterion, and the two components were 

optimized accordingly. The presented method only depends 

on the availability of few cycles of clean ECG. Knowledge 

of the noise statistics (e.g. the autocorrelation function of the 

noise) is not required in the computations for the optimal 

system, which is an advantage over Wiener-type solutions. 

Preliminary experimentation has indicated encouraging 

performance. Future work will have to focus on thorough 

experimentation, and address questions regarding the 

development of the proposed concept into a clinical real-

world system. 
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(a) 

 
(b) 

Figure  4. Filtered ECG signal after applying: (a) the proposed method 

(solid line), and (b) a single optimized Fourier filter (solid line). The ideal 
ECG is also shown (dotted lines). The contaminated ECG contained 

electrode motion noise of 18dB SNR. 

 
(a) (b) 

Figure 5. Filtered ECG signal after applying: (a) the proposed method (solid 

line), and (b) a single optimized Fourier filter (solid line). The ideal ECG is 
also shown (dotted lines). The contaminated ECG contained electrode 

motion noise of 0dB SNR. 

 

TABLE 1 

 RMSE AND NCC VALUES OF THE FILTERED ECG SIGNALS CORRESPONDING TO DIFFERENT LEVELS OF ELECTRODE MOTION ARTIFACT DENOISED WITH THE 

PRESENTED METHOD AND A SINGLE OPTIMIZED FOURIER FILTER 

 

                        SNR(dB)  

Method 
24 18 12 6 0 -6 

Proposed 
RMSE 0.0595 0.0721 0.1003 0.2005 0.1532 0.1391 

NCC 0.9905 0.9859 0.9724 0.9007 0.9354 0.9531 

Optimized 

Fourier Filter 

RMSE 0.2110 0.2239 0.2568 0.3144 0.3670 0.3910 

NCC 0.8811 0.8653 0.8165 0.6918 0.5207 0.4152 
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