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Abstract² Local field potentials (LFPs) have the potential to 

provide robust, long-lasting control signals for brain-machine 

interfaces (BMIs). Moreover, they have been hypothesized to be 

a stable signal source.  Here we assess the long-term stability of 

LFPs and multi-unit spikes (MSPs) in two monkeys using both 

LFP-based and MSP-based, biomimetic BMIs to control a 

computer cursor.  The monkeys demonstrated highly accurate 

performance using both the LFP- and MSP-based BMIs. This 

performance remained high for 11 and 6 months, respectively, 

without adapting or retraining.  We evaluated the stability of 

the LFP features and MSPs themselves by building, in each 

session, linear decoders of the BMI-controlled cursor velocity 

using single features or single MSPs.  We then used these 

single-feature decoders to decode BMI-controlled cursor 

velocity in the last session. Many of the LFP features and MSPs 

showed stably-high correlations with the cursor velocity over 

the entire study period.  This implies that the monkeys were 

able to maintain a stable mapping between either motor 

cortical field potentials or multi-spike potentials and BMI-

controlled outputs.   

I. INTRODUCTION 

Brain machine interfaces (BMIs) offer the potential to 

help people paralyzed from spinal cord injury, ALS, or 

stroke regain function.  A few preclinical studies of invasive 

BMIs in tetraplegic patients use action potentials (spikes) 

from individual neurons as inputs.  Yet it remains uncertain 

whether current technologies will be able to record from 

spikes from many neurons for the decades that a successful 

implant will require.  Local field potentials (LFPs) are 

thought to represent summed potentials from thousands of 

neurons. Therefore, it has been hypothesized that they could 

provide robust, long-lasting control signals for neural 

prosthetic devices.  Indeed, LFPs contain nearly as much 

information about movement as do spikes [1,4, 5, 11, 14] 

and retain this information when spikes are absent on the 

same electrodes [4].  Multi-unit spikes (MSPs), here defined 

as unsorted threshold crossings [6], are also thought to 

represent signals from multiple neurons.  As such, they may 

also provide better longevity than single units. 

 Another consideration in BMI design is the frequency 

with which BMI decoders require recalibration.  Less 
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frequent recalibration would allow more time for the user¶V�

brain to learn the mapping between neural activity and BMI 

output.  In this study we assess the long-term stability of 

LFPs and MSPs during control of a computer cursor using a 

static decoder of LFPs over 11 months.  We also 

investigated the performance of BMIs using a static decoder 

of MSPs over 6 months.  Both decoders were biomimetic, 

i.e., trained on the normal physiological function of the 

cortical signals.   

We provide evidence here, for the first time, that the 

relationship between individual LFPs and BMI output 

remains remarkably stable over 11 months.  We also show 

that individual MSPs remain surprisingly stable for almost 6 

months.  Previously it had been shown that spikes remain 

stable during natural movement and spike-based BMI 

control over a period of a day and 19 days respectively [3,7].  

From a BMI perspective this is significant because it implies 

that decoder re-training may be necessary only infrequently 

when using either LFP-based or MSP-based BMIs.  This 

property of the signals should allow BMI users to improve 

and stabilize control of BMI outputs more quickly and 

easily.  Further, this neural stability supports the concept that 

the brain learns BMIs similar to a natural motor skill. 

II. METHODS 

A. Behavior and recording 

All procedures were approved by the Northwestern 

University Institutional Animal Care and Use Committee.  

All neural and behavioral data were recorded using a 96-

channel Multiple Acquisition Processor (Plexon, Inc, Dallas, 

Tx).  Monkeys used a 2D robotic manipulandum to move a 

computer cursor to random target locations.  We 

simultaneously recorded intra-cortical LFPs and spikes from 

the primary motor cortices of 2 rhesus macaques contra-

lateral to the moving arm using surgically-implanted, 96-

channel silicon electrode arrays (Blackrock Microsystems).  

We calculated the end-point position of the hand from the 

maQLSXODQGXP¶V�MRLQW�DQJOHV��VDPSOHG�DW���N+]��DQG�GRZQ-

sampled to 20 Hz for analysis.  LFP signals were band-pass 

filtered from 0.7 Hz to 300 Hz (or 0.7 Hz to 170 Hz on 32 of 

the channels) and sampled at 1 kHz.   

 

B. Decoder Training 

 We used ten minutes of reaching activity to build the 

static online control decoder for each monkey.  For each 

LFP channel, we calculated the local motor potential (LMP) 

[11, 13] using a 256-ms moving average of the LFP signal, 

overlapping by 206 ms, to provide a sample every 50 ms.  In 

addition to the LMP, we computed the spectral power of 
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each LFP channel by applying a 256-ms Hanning window 

(overlapped by 206 ms) and squaring the amplitude of the 

windowed signal's discrete Fourier transform. We averaged 

spectral power within the following frequency bands: 0-4 

Hz, 7-20 Hz, 70-115 Hz, 130-200 Hz, and 200-300 Hz and 

used the logarithm of this power for features. To reduce the 

likelihood of over-fitting, we reduced the dimensionality of 

the input space as in prior studies. We computed the absolute 

value of the correlation coefficient (IRI) between each 

feature and the velocity in each dimension, and selected the 

150 features with highest mean IRI as inputs to a Wiener 

cascade decoder [17]. The Wiener cascade included 10 lags, 

for a total filter length of 0.5 s. Multi-unit spikes were high­

pass filtered at 300 Hz and sampled at 40 kHz. The 

threshold on each channel was set by visual inspection at the 

beginning of the first MSP session and kept constant for the 

duration of this study. The mean thresholds over all channels 

were 3.8 and 4.9 standard deviations above baseline for 

monkeys C and M, respectively. We used MSP firing rates 

in 50-ms bins as the inputs to a Wiener cascade filter 

(including 10 causal lags). 

C. Brain control using LFPs and MSPs 

Monkeys performed online control (brain control) in the 

random target pursuit task by moving the cursor to a 

randomly-located, 4x4-cm square target within 10 s of target 

appearance, and holding for 0.1 s to obtain a liquid reward. 

Success rate was defined as the number of successful trials 

divided by the total number of trials. 

Brain control using either LFPs or MSPs was done 

approximately 2-3 times per week for 30-50 minutes each 

day, alternating between LFP and MSP brain control within 

and across days. MSP control sessions started 

approximately 5 months after monkeys had started LFP 

control. Monkeys' arms were not restrained during brain 

control. They did make small movements, however, these 

were not consistent from session to session for the same 

cursor movement. 
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D. Analysis of LFP and MSP Feature Stability. 

To assess the stability of the signals themselves, we built 

Wiener decoders of cursor velocity for each of the 150 

features and ~85 units included in the fixed decoders used 

for LFP and MSP brain control, similar to Carmena et al. [2] 

and Chestek et al. [3]. These sets of single feature decoders 

were built for each experimental session of LFP and MSP 

brain control. The decoders were then tested on 10 minutes 

of brain control data from the very last LFP and MSP BMI 

sessions. We defined the performance of the single feature 

decoders as the correlation coefficient (R) between predicted 

and actual brain controlled velocity. We used the single­

feature R values as a method to assess the stability of the 

relationship between each feature and the brain-controlled 

output. Essentially, the single-feature R values measured the 

contribution of each feature to decoder performance during 

brain control over time. Because the decoder mapping was 

overdetermined and nonlinear, there was no a priori reason 

to assume that an individual feature would consistently 

maintain its relationship with the output. 

III. RESULTS 

Over the study period, modulation of both LFP features 

and MSPs maintained a largely stable relationship with BMI 

outputs. This is first evident from the stability of brain 

control performance, assessed through metrics that include 

path length, time to target and success rate. Averaged across 

monkeys and time, path length was 2.9 times that of a 

perfectly straight reach, and time to target was 

approximately 0.2 s/cm, comparable to levels reported in the 

literature for spike-based brain control [9, 14]. Success rate 

during online LFP and MSP brain control remained stable 

forl 1 and 6 months, respectively (Fig. l ). 

LFP and MSP signal stability became further evident 

when assessed through offline single feature decoding 

performance (Fig. 2). Many features had high R values that 

were stable or increased throughout the study. This was 

especially true in the LMP features, and also in a few of the 

high gamma and delta features. Most features that were not 

highly correlated at the beginning stayed that way. The 
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Figure 1. Performance of monkeys using LFP- (green) and MSP- (red) based BMis. The success rates for monkeys C (left) and M (right) 

for over 11 months and 6 months for LFP and MSP based BMis, respectively. 
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single feature decoders however, were particularly sensitive 

to perturbations in the recording setup. Fig. 2 notes each 

time a disruption occurred to the recording setup (e.g., a 

channel becoming intermittently noisy due to wear in a cable 

or connector). These perturbations affected the BMI output 

in such a way as to completely change the relationship 

between individual LFP features and BMI output (blue 

vertical bands). After accounting for these disruptions, the 

LFP-output relationship would return to its original state. 

Thus, single feature decoding performance ultimately 

remained stable for this period for both MSPs and LFPs. 
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IV. DISCUSSION 

BMI performances using LFPs and MSPs were largely 

stable for 11 and 6 months, respectively. Moreover, many of 

the LFP and MSP signals themselves remained stable during 

this period ofBMI use. This is far greater signal stability 

than has been demonstrated to date [3, 7, 15]. This signal 

stability persisted despite the facts that 1) the monkey 

learned to use other decoders in the interim and 2) we had to 

remove some channels from the decoder due to recording 

noise. This was especially true of the local motor potential, 

a few of the high-gamma bands, and a number of the MSPs. 

The stability of the MSPs, in particular, was surprisingly 

high. 

These results may have implications in the design of BMI 

decoders. Since neural signals remain stable in relation to 

output on the order of months to years, it would only be 
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Figure 2. Performance of single feature (A) LFP decoders and (B) MSP decoders for Monkey C. Color denotes the correlation coefficient 

(R) between the output of the single feature decoder and the actual brain-controlled velocity ill the last session. Numbered arrows ill (A) 

note times of changes in single feature performance due to hardware malfunction (i.e., charmels beconung noisy (1) due to worn cables or 

connectors) over the study period. Those charmels were subsequently removed from the BMI decoder (2) by zeromg out the 

corresponding weights in the Wiener decoder of the BMI. 

309



  

necessary to retrain BMI decoders every few months or so.  

Thus, there may not be a need to continuously adapt 

decoders algorithms; rather, it may be advantageous to adapt 

in early learning phases, then let the brain adapt to the 

decoder in later phases. Indeed, we saw gradual 

improvement (over weeks to months) of BMI performance 

in one of our monkeys.   

 This study demonstrates that both LFPs and MSPs can 

provide stable and high-performance control signals for 

BMIs.  Thus, both multi-unit spikes and LFPs hold promise 

as BMI inputs.  It remains to be seen whether MSPs and/or 

LFPs will deliver on their potential for greater longevity than 

single-unit spikes.   
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