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Abstract— Primary motor-cortex multi-unit activity (MUA)
and local-field potentials (LFPs) have both been suggested as
potential control signals for brain-computer interfaces (BCIs)
aimed at movement restoration. Some studies report that LFP-
based decoding is comparable to spiking-based decoding, while
others offer contradicting evidence. Differences in experimental
paradigms, tuning models and decoding techniques make it
hard to directly compare these results. Here, we use regression
and mutual information analyses to study how MUA and
LFP encode various kinematic parameters during reaching
movements. We find that in addition to previously reported
directional tuning, MUA also contains prominent speed tuning.
LFP activity in low-frequency bands (15-40Hz, LFPL) is pri-
marily speed tuned, and contains more speed information than
both high-frequency LFP (100-300Hz, LFPH ) and MUA. LFPH
contains more directional information compared to LFPL, but
less information when compared with MUA. Our results suggest
that a velocity and speed encoding model is most appropriate
for both MUA and LFPH , whereas a speed only encoding model
is adequate for LFPL.

I. INTRODUCTION

Primary motor-cortex (M1) is the major area for harness-
ing neural signals for brain-computer interface (BCI) control.
In recent years, single-unit activity (SUA), multi-unit activity
(MUA) and local-field potentials (LFPs) have been proposed
as possible control signals for BCIs. While the relationship
of SUA to various movement parameters during reaching
movements has been extensively studied (e.g. [1]–[7]), that
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of MUA and LFP is not as well understood. Several groups
have studied low-frequency LFP in the time or frequency
domain, concluding that it encodes hand position, direction
or velocity information [8]–[13]. Studies of high-frequency
LFP in the frequency-domain have shown similar results [9],
[13]–[18]. Comparisons of movement related information
encoded by LFP to that encoded by either SUA or MUA have
resulted in contradicting results: some studies have reported
that the amount of information encoded by LFP exceeds that
encoded by spiking activity, while other studies report less
movement related information in LFP than in spiking.

Several factors could account for this discrepancy. First,
experimental paradigms differ across the various groups.
Second, while some studies used averaged neural activity,
others used instantaneous activity. Third, some studies de-
coded kinematics from neural activity, while others used
mutual-information (MI) or linear correlation based analyses.
Finally, each of the studies made different assumptions about
the encoding model.

Here, we extend previous work by systematically studying
tuning properties of LFP and comparing them to MUA
tuning. Motor-cortical SUA has been previously shown to
encode both direction and speed [5]. We therefore considered
tuning models which included direction, velocity, speed and
their additive combinations. We used instantaneous neural
activity and kinematics, as opposed to averaged data, to make
our conclusions more relevant for real-time BCI use. We
found that MUA exhibited prominent speed tuning, along
with directional tuning which was especially evident in a
small subset of the channels examined. Low- and high-
frequency LFP were speed tuned. Some high-frequency LFP
channels demonstrated directional tuning similar to that of
MUA.

II. METHODS
A. Behavioral Task and Data Collection

A Rhesus monkey was trained to perform center-out
movements using the arm contralateral to the recording site.
The animal was comfortably seated in a primate chair, in
front of a computer screen, with one arm restrained and the
other free to move behind the screen, thus obscured from
the animal. An active marker system (Phasespace Inc, San
Leandro, CA) was used to track its hand position in real-
time. This 3D position was projected to a 2D plane and
was used to render a cursor on the computer screen in real-
time. At the beginning of each trial, a center target appeared
and the animal had to move its hand so that the cursor
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location matched the center target. Then, after 200-400ms, a
peripheral target appeared. The animal reached so the cursor
moved to the peripheral target, within ~800ms, or else the
trial would fail. Successful trials were indicated with a water
reward. On some trials, the animal had to move its hand so
the cursor followed paths of varying shapes and thicknesses.
On most trials, the hand path was not constrained. Neural
tuning did not seem to differ between these two tasks, so
those data were combined for the analyses described here.

After the animal had sufficient proficiency in the task,
a 96-electrode silicon array (Blackrock Systems Inc.) was
chronically implanted in the arm region of the contralateral
motor-cortex. All surgical procedures followed protocols
approved by the University of Pittsburgh Institutional Animal
Care and Use Committee. Post-surgery, the animal resumed
performing the task while neural activity was recorded and
stored for off-line analysis using a TDT system (Tucker-
Davis Technologies, Florida). The 3D hand position (sam-
pled at 120Hz) and relevant task information were stored in
synchronization with the neural data.

An RMS based threshold was used to obtain threshold-
crossing event times for every channel. Here, we refer to
these threshold-crossing events as MUA, but that does not
necessarily imply these are multi-unit clusters of neural activ-
ity that are well separated from the noise floor. LFP activity
was obtained by band-pass filtering channel voltage signals
(10-500Hz), and was stored at a sampling rate of 1220Hz.
Off-line, MUA threshold-crossings were converted to firing-
rates by counting events in consecutive 100ms bins and
dividing by the bin width. The LFP power-spectral density
(PSD) was computed at a temporal resolution of 16ms with a
frequency resolution of 5Hz using the mem library (BCI2000
Project [19]), and then log-transformed. In the analyses
presented in this paper, we used two frequency-bands: 15-
40Hz (LFPL) and 100-300Hz (LFPH ). These two bands
demonstrate the two major types of modulation commonly
found in LFP during reaching movements (suppression and
facilitation relative to baseline, e.g. [20]). Due to noise arti-
facts in the frequency band 28-32Hz, these frequencies were
notch-filtered prior to computing the LFP PSD. We chose
the LFPL and LFPH frequency bands based on both single
channel and channel averaged normalized time frequency
plots. We found that frequencies in these ranges tended to
demonstrate similar tuning (data not shown). Furthermore, R2

values for the 41-99Hz band (see sec. II-B) were significantly
lower compared to the other two bands, hence we ignored it
in further analyses.

B. Tuning Models Estimation

Based on previous studies, suggesting that SUA contains
both directional and speed information [5], we considered
the following 5 tuning models:

y = b0 +bxdx +bydy +noise (1)

y = b0 +bxvx +byvy +noise (2)

y = b0 +bss+noise (3)

y = b0 +bxdx +bydy +bss+noise (4)

y = b0 +bxvx +byvy +bss+noise (5)

where:
• y is a single-channel MUA instantaneous firing-rate in

Hz, or a single channel log-transformed instantaneous
LFP PSD averaged across a given frequency band

• ~d = (dx,dy) = (cos(θ),sin(θ)) is the instantaneous di-
rection of hand movement

• ~v is the instantaneous hand velocity
• s = |~v| is the instantaneous hand speed

These models relate neural activity to instantaneous direction
(eq. 1), velocity (eq. 2), speed (eq. 3), direction & speed (eq.
4), and velocity & speed (eq. 5). Together, they allow system-
atic investigation of how MUA and LFP relate to direction
and speed components in a multiplicative or additive manner.
Prior to fitting the regression models, MUA firing-rate and
kinematic features were spline-interpolated to match the LFP
PSD sampling frequency. We also performed a lag analysis,
where we fit the above models with varying lags between the
neural and kinematic features. We considered lags ranging
from causal values (-300ms) to non-causal values (+400ms),
at 50ms steps. For most MUA channels, the best fits, as
determined by coefficient of determination (R2) values, were
obtained with causal lags in the range of -100 to -150ms.
For real-time BCI control, a single time-lag would likely be
used for all channels; therefore we chose a causal lag of
100ms for all channels (MUA and LFP), for all analyses in
this paper.

C. Mutual Information Estimation

The models in eq. 1-5 explore the linear relationship
between neural activity (MUA, LFP) and velocity, direction
and/or speed. However, if neural activity is linearly related to
velocity, then it might be non-linearly related to its magnitude
(speed). We therefore explored non-linear relationships be-
tween neural and kinematic features, in the form of mutual-
information (MI), which measures any dependency between
two random variables, regardless of its functional form. MI
was empirically estimated by:

MI(X ;Y ) = ∑
x∈X

∑
y∈Y

p(x,y)log(
p(x,y)

p(x)p(y)
) (6)

where:
• Y represents single-channel instantaneous neural activity
• X represents instantaneous direction or speed

Empirical MI estimations are sensitive to data discretization,
hence we chose the following discretization schemes. Given
that the behavioral task used peripheral targets at roughly
8 regions around the center target, we discretized movement
direction (θ ) to 8 bins. To ensure similar entropy for direction
and speed, speed was discretized to 8 bins as well. We used
varying bin widths resulting in close to uniform marginal
distributions for direction and speed. For Y , we used MUA
spike counts in 100ms bins, or discretized LFP PSD for a
given frequency-band.
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Empirical MI estimates tend to be positively biased [21].
We estimated this bias by permuting the neural data and
computing the MI to direction and speed 100 times; then
computing the bias as the mean of these 100 null MI values.
This bias estimate was then subtracted from the MI estimate,
for every channel and neural data type, in all the analyses
described here.

To determine an optimal discretization for LFP PSD, we
computed the bias-corrected MI using 5-305 bins (in steps
of 5). As expected, both the MI and bias increased with the
number of bins, but bias-corrected MI estimates for all LFP
channels and frequency bands tended to plateau for more
than 25 bins. We therefore discretized LFP PSD using 25
bins.

III. RESULTS
A. Linear Tuning to Kinematics

We first explored linear tuning of MUA and LFP to
direction, velocity and speed using the regression models
from sec. II-B. We fit the models using data from multiple
recording sessions and results were qualitatively similar. We
chose to present data from the two sessions with the largest
number of trials. Fig. 1 summarizes our findings in the form
of R2 box-plots across all channels, one for every model and
neural modality (MUA, LFPL, LFPH ). It should be noted
that R2 values are lower than those previously reported using
averaged data, because we used instantaneous non-smoothed
data, as would be the case in on-line BCI control.
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Fig. 1. MUA and LFP Tuning Model R2. Population tuning model R2 for
the 5 models described in sec. II-B: Direction (D), Velocity (V), Speed (S),
Direction & Speed (D+S), Velocity & Speed (V+S). Box-plots describe the
5th, 25th, 75th and 95th R2 percentiles, as well as the mean (solid line) and
median (dashed line) R2, across all channels with significant regressions.
Percentages above the 95th percentile indicate the proportion of significant
regressions among 87 channels. MUA demonstrates the strongest direction
and velocity tuning. MUA speed tuning is prominent. Most LFPL and LFPH
channels are speed tuned. Some LFPH channels show direction and velocity
tuning, equivalent to MUA. LFPL shows the strongest speed tuning across
the three modalities.

While previously published results indicated that SUA
encodes direction or velocity [5], [11], [17], we found that

MUA encoded speed better than either direction or velocity,
possibly due to the fact that threshold-crossing events in
MUA originated from multiple single-units with different
directional tuning. The two models incorporating direction
& speed (eq. 4) or velocity & speed (eq. 5) yielded the
highest R2 values across MUA channels. These models were
better than either speed, direction, or velocity only models,
indicating that MUA encoded directional information which
was independent of speed information. The differences be-
tween the mean and median R2 for all models indicated that
the R2 distribution has a long positive tail. Therefore, MUA
tuning was heterogeneous, where a small subset of channels
(~20%) encoded the kinematic features better than the other
channels.

We found that LFPL encoded only speed, with no evidence
of directional tuning. The difference between the LFPL mean
and median R2 was very small, suggesting that LFPL speed
tuning was homogeneous, in the sense that most channels
encoded speed equally well. Most LFPH channels contained
prominent speed tuning, but in contrast to LFPL, a subset of
channels (~20%) were also directionally tuned.

Fig. 1 also allows us to compare tuning across neural
modalities. As expected, most MUA channels encoded direc-
tion and velocity better than either LFPL or LFPH channels.
A subset of LFPH channels (~20%) demonstrated direction
or velocity R2 values equivalent to the average MUA R2.
Speed was best encoded by LFPL: the worst LFPL channels
encoded speed better than ~80% of MUA channels and ~70%
of LFPH channels.

B. Non-Linear Tuning to Kinematics

We used the information theoretic analysis described in
sec. II-C to capture potential non-linear dependencies be-
tween MUA, LFPL, LFPH and direction or speed, beyond
the linear tuning described in sec. III-A. Fig. 2 shows box-
plots of MI values across all channels and neural modali-
ties. The results in Fig. 2 are qualitatively similar to Fig.
1. Direction was best encoded by MUA, followed by a
subset of LFPH channels with weaker direction encoding.
While MI(LFPL;direction) was very low, MI(LFPL;speed)
was higher than MI(MUA;direction). MI(MUA;speed) and
MI(LFPH ;speed) were similar across channels, both lower
than MI(LFPL;speed). These results support the tuning anal-
yses in sec. III-A, suggesting that linear models adequately
describe the relationships between MUA, LFP and speed or
direction.

IV. DISCUSSION

Multi-unit activity (MUA) and local-field potentials
(LFPs) are two potential control signals for brain-computer
interfaces. Recent studies relating MUA and LFP to vari-
ous movement kinematics resulted in disagreement. Some
studies suggest that LFP based decoding is equivalent to
MUA based decoding, while other studies have found MUA
based decoding to be superior. One possible reason for the
contradicting results is the different tuning models used in
those studies. Another reason could be data pre-processing:
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Fig. 2. MUA and LFP MI Comparison. MI between MUA, LFPL, LFPH
and kinematics (direction and speed) is compared. MI between MUA and
direction is the highest among the three modalities. MI between LFPL and
speed is the highest among the three modalities. Compare to fig. 1 where
linear tuning is shown.

some studies used averaged data, others applied different
filters to instantaneous data. The relative time-lags between
neural data and kinematics also varied across studies.

Here, we studied a rich set of MUA and LFP encoding
models using instantaneous non-filtered data, with a fixed
lag, to closely match the type of data used in on-line BCI
studies. We found that while MUA was directionally tuned,
as previously reported, it was more strongly tuned to speed.
Based on this finding, decoding models utilizing MUA would
benefit from taking speed tuning into account. A velocity-
speed encoding model (eq. 5) best represented MUA tuning
in our data. MUA tuning was heterogenous across channels:
some channels encoded speed or direction much better than
others. This suggests that BCI decoding might also benefit
from some form of channel selection criteria.

Of the models we tested, we found that our low-frequency
LFP activity (LFPL) was driven predominantly by speed, and
that LFPL activity across channels was highly correlated.
High-frequency LFP activity (LFPH ) encoded both speed
and direction, although directional information was lower
compared to MUA. LFPH activity across electrodes was
more heterogenous compared to LFPL: similarly to MUA, a
subset of LFPH channels best encoded speed or direction. We
determined that the most appropriate LFPL encoding model
was a speed only model (eq. 3), whereas a velocity-speed
encoding model (eq. 5) best described LFPH tuning.

Our regression and mutual-information analyses showed
similar trends for both MUA and LFP, suggesting that linear
direction and speed models adequately capture the neural
tuning in our data. Based on our findings, a hybrid MUA-
LFP decoder, accounting for the prominent speed tuning in
both neural modalities, should prove superior to velocity-
only based decoders.
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