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Abstract— The intraday robustness of brain-machine in-
terfaces (BMIs) is important to their clinical viability. In
particular, BMIs must be robust to intraday perturbations
in neuron firing rates, which may arise from several factors
including recording loss and external noise. Using a state-of-
the-art decode algorithm, the Recalibrated Feedback Intention
Trained Kalman filter (ReFIT-KF) [1] we introduce two novel
modifications: (1) a normalization of the firing rates, and (2)
a reduction of the dimensionality of the data via principal
component analysis (PCA). We demonstrate in online studies
that a ReFIT-KF equipped with normalization and PCA (NPC-
ReFIT-KF) (1) achieves comparable performance to a standard
ReFIT-KF when at least 60% of the neural variance is captured,
and (2) is more robust to the undetected loss of channels. We
present intuition as to how both modifications may increase the
robustness of BMIs, and investigate the contribution of each
modification to robustness. These advances, which lead to a
decoder achieving state-of-the-art performance with improved
robustness, are important for the clinical viability of BMI
systems.

I. INTRODUCTION

Brain-machine interfaces (BMIs) map cortical activity into

meaningful control signals, via a decoder, to drive computer

cursors or robotic limbs [1]–[7]. Significant translational

work has helped to improve the performance of BMIs, which

is important to their clinical viability [1], [3], [7]. However,

intraday and interday stability of BMIs remain important

hurdles to address, since the potential for instability in

neuron firing rates, or the loss of neurons, can cripple a

high-performing decoder [8], [9]. In this study, we address

undetected intraday neuron loss: after a decoder is trained at

the beginning of the day, we would like it to be robust to the

unexpected loss of neurons without having to be retrained.

Such neuron loss could occur, e.g. from a change in spike

amplitude, rendering the spike event no-longer detected (as

in spike sorting or threshold crossings with static parameters)

[10]. One might employ an additional algorithm to detect the

loss of a neuron; here, however, we address the case where a

decoder is more robust to neuron loss without any additional
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algorithms. We further recognize that algorithms to detect

neuron recording loss may serve as an additional source of

robustness. Nevertheless, the goal of this study is to present

a decoder which achieves state-of-the-art performance while

being more robust than current state-of-the-art techniques to

undetected channel loss.

II. METHODS

A. Online neural recordings

All procedures and experiments were approved by the

Stanford University Institutional Animal Care and Use Com-

mittee. Experiments were conducted with an adult male

rhesus macaque (J), implanted with two 96 electrode Utah

arrays (Blackrock Microsystems Inc., Salt Lake City, UT)

using standard neurosurgical techniques [4]. Monkey J was

implanted 26 − 33 months prior to the experiments. One

electrode array was implanted in PMd and the other in M1,

as estimated visually from local anatomical landmarks.

Monkey J was trained to make point-to-point reaches in

a 2D plane with a virtual cursor controlled by the contralat-

eral arm or by a neural decoder [11]. The virtual cursor

and targets were presented in a 3D environment (MSMS,

MDDF, USC, Los Angeles, CA) described in [1]. Hand

position data were measured with an infrared reflective bead

tracking system (Polaris, Northern Digital, Ontario, Canada).

Behavioral control and neural decode were run on separate

PCs using the Simulink/xPC platform (Mathworks, Natick,

MA). Neural data were initially processed by the Cerebus

recording system (Blackrock Microsystems Inc., Salt Lake

City, UT) according to specifications described in [1]. Spike

events were detected by setting a threshold value to −4.5×
the RMS voltage of the channel. The number of spike events

were counted in non-overlapping 5 ms bins.

B. Decoder task

All BMI experiments reported in this paper utilize the Re-

calibrated Feedback Intention Trained Kalman filter (ReFIT-

KF) algorithm [1] which utilizes intention estimation tech-

niques and a control-feedback approach to increase the per-

formance of Kalman filters (KFs). While training sets were

collected using a center-out-and-back task with 8 targets, all

performance sessions reported in this paper utilized a cued

target selection task with a 5×5 grid of targets, one of which

was the correct target on any given trial. The acceptance

windows (one for each target) were square boxes with 4.8 cm
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sides, and were tiled contiguously in the workspace with

no overlap (so that the workspace is 24 cm × 24 cm). At

any point in time, any target could be selected by dwelling

on the target for 450 ms, unless the cursor was outside of

the workspace (i.e. not on any target). There was a “grace

time” of 200 ms at the start of all trials during which dwell-

time was not counted, to account for reaction time. Targets

were presented for a maximum of 5 s before a new target

was shown. Because any target can be selected during the

task, each selection conveys log2(25) bits of information,

enabling a bitrate calculation for the task. We conservatively

assumed that any incorrect selection must be compensated

by a correct selection (as when selecting the backspace key

to undo an incorrect keystroke on a keyboard). Given that T

is the duration of a sequence in which r correct targets were

selected and s incorrect targets were selected, the bitrate is

I = log
2
(25)(r−s)
T

as long as r > s, and I = 0 otherwise. By

this performance metric, a success rate of 50% on the task

corresponds to I = 0.
To simulate channel loss, we randomly chose channels

and set their firing rates to zero, as if they were no longer

firing. The decoder was not retrained, as we were testing for

robustness in the case of undetected channel loss.

C. Normalization of channel firing rates

Let yk ∈ R
N be the number of observed spike events in

time bin k for N channels. To perform firing rate normal-

ization, we first averaged the neural data in each trial over

16 conditions, corresponding to the center-out-and-back task

with 8 targets. We then performed a normalization on each

channel’s firing rate [12], (yk)i (i denoting the ith element

of vector yk, for i = 1, . . . , N ), given by

(zk)i =
(yk)i
ri + ν

(1)

where ri is the maximum observed firing rate minus the

minimum observed firing rate in the condition-averaged

neural data for channel i, and ν is a non-negative scalar.

D. Dimensionality reduction via principal component anal-

ysis

To reduce the dimensionality of the neural data, we

performed principal component analysis on the normalized

condition-averaged trajectories. The normalization was used

so that channels with higher firing rates, which tend to

have higher variance, do not dominate the covariance of the

data [13]. Further, PCA was performed on the condition-

averaged trajectories so that more emphasis would be placed

on the variance between task conditions rather than single-

trial variance. Let (µ,Σ) denote the mean and the covariance

matrix of the normalized condition-averaged trajectories, and

let the eigenvalue decomposition of the covariance matrix

be Σ = UΛUT . Λ ∈ R
N×N is diagonal populated with

the eigenvalues Λii = λi corresponding to the amount of

variance captured in dimension i and are sorted so that

λ1 ≥ λ2 ≥ · · · ≥ λN . The columns of U ∈ R
N×N are

called the PC vectors, the first D of which are stored in

P ∈ R
N×D. To compute a low-dimensional projection of the

binned spike-counts in R
D, we calculated sk = P

T (zk−µ).
We then used the sk’s as the observation of a ReFIT-KF (as

opposed to binned spike counts, yk); for convenience, we call

this decoder the NPC-ReFIT-KF. We refer to sk ∈ R
D as the

neural state, since it captures something meaningful about

how the activity of a network of spiking neurons evolves.

III. INTUITIONS FOR NPC-REFIT-KF ROBUSTNESS

It is important that the NPC-ReFIT-KF, as a decoder

which excludes neural variance by virtue of reducing the

dimensionality of the neural data, be of comparable perfor-

mance to the ReFIT-KF. Previous studies suggest that the

dimensionality of PMd and M1 during simple reaching tasks

is approximatelyD = 10−20 [13]. Hence, although reducing

the dimensionality of the data from N to D results in the

exclusion of neural variance, much of the meaningful signal

variance is maintained in the top 10−20 dimensions. There-

fore, we predict that the performance of the D-dimensional

NPC-ReFIT-KF will be similar to that of the ReFIT-KF, until

the point where D is low enough such that meaningful signal

variance is lost. For this work, we use D = 20, capturing

approximately 60% of the neural variance.

A. The effect of firing-rate normalization on decoder weights

Normalization by ri + ν (Eqn. 1) can be viewed as a

regularization of the firing rates. For channels with strong

responses, the normalization maps their firing rate to approxi-

mately the unity interval, so that strongly firing channels have

similar dynamic range. (Alternatively, this can be viewed

as very approximate variance normalization.) On the other

hand, the parameter ν (chosen to be ν = 20 spikes/s) causes

the activity of weakly firing channels to be mapped to a

smaller than unity dynamic range of firing. Therefore, the

normalization penalizes weakly firing channels, as well as

channels with relatively high variance but little modulation.

This is an important pre-processing step to principal compo-

nent analysis, so that high variance channels do not dominate

the dimensionality reduction [13].

The normalization, which causes strongly firing channels

to have similar dynamic range, also empirically decreases

the variance in channel contribution to the decoder (i.e.

the spread in channel contribution across all channels) by

approximately 15%. An intuition for how this may affect

robustness is as follows: when a small set of channels are

assigned relatively strong weights in the decoder relative to

all other channels, the loss of such strong weighted channels

may cripple decoder performance. On the other hand, when

the decoder weights for informative channels become more

similar, the robustness of the decoder may improve. However,

to ultimately assess how the normalization of firing rates

affects robustness to channel loss, one should analyze how

driving the decoder with the perturbed normalized firing rates

affects the decoded velocity. In §III.C, we compare how the

ReFIT-KF and the NPC-ReFIT-KF (which incorporates nor-

malization) project perturbed neural data to velocity errors.

294



Channel View 
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Fig. 1. Two views of the potential benefit of PCA: (a) The x-axis denotes the firing rate of channel Ni, and the y-axis that of channel N2. The blue 
dot represents a firing rate observation, while the red dot represents the firing rate observation in the case when channel N2 is lost (so that N2 = 0). 
Losing N 2 introduces error EH in the N 2 direction. (b) Both the unperturbed observation (blue) and the perturbed observation (red) are projected onto 
PCi. The orientation of PCi indicates that Ni and N2 tend to fire together. (c) By virtue of the projection, a non-zero firing rate is inferred for N2 in the 
case of channel loss (red), reducing the error in the observation of N2, i.e. llE~ 1 Iii < llEH Iii- However, there is an error introduced in the observation of 

Ni, i.e. 11Ef1 Iii> 0. Hence, large errors in any single channel become distributed, in a mitigated fashion, amongst the other channels. (d) For the same 
scenario, we show the (hypothetical) covariance ellipsoid, indicating that the neural state tends to vary along PCi. (e) We show the projection of EH onto 
PC2, which corresponds to introducing an error EL 2 in the direction of PC2. We note that llEH II§ = llEL 1 II§+ llE3; II§. (f) However, if the decoder only 
uses PCi, the error introduced into PC2 does not perturb the decoder. From here, it is apparent that llEL 1 112 :S llE 112. 

B. Dimensionality reduction incorporates unsupervised 
network-level information into the BM! 

To be more clear in explaining intuition as to how dimen­
sionality reduction via PCA may increase robustness, we 
ignore normalization and mean-subtraction for this section 
only. Hence, we let sk = pT Yk· It is straightforward 
to account for normalization and mean-subtraction in the 
analyses of this section. 

I) Equivalent NPC-ReFIT-KF: In the case of undetected 
channel loss, a channel which previously reported a non­
zero firing rate will report a zero firing rate, causing the 
performance of a BMI to decline. To analyze this scenario, 
we consider the steady-state form of the ReFIT-KF which 
converges on the order of seconds [14]. In steady-state, the 
KF is a linear feedback filter of the form 

(2) 

Therefore, we may write the NPC-ReFIT-KF as: 

Mfxk-1 + Mf sk 

Mfxk-1 + Mf pT Yk 

M L ML PC 
1 Xk-1 + 2 Yk 

(3) 

(4) 
(5) 

with Mf = Mf pT and yfC = P pT Yk, since pT P =I by 
the orthonormality of the Pi 's. Hence, the low-dimensional 
decoder can be viewed as operating on pr~cted firing rates 
yf0 . (Note that by the presence of pT in Mf, which causes 
the neural data to project to kinematics through the PCs, we 
have that Mfyf0 = MfYk· Analyzing yf0 E range(P) is 
helpful in understanding the projection.) 

2) PCA peiforms a firing rate completion in the channel 
space: The term yf0 is significant because it incorporates 
network-level information, P, into the firing rates. P pT is 
an orthogonal projector onto range(P), which passes through 
the origin. When a channel is erroneously reporting a firing 
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rate of 0 (as in undetected channel loss), the projection onto

range(P ) infers a firing rate for this channel by projecting

all of the neural data into the underlying subspace in which

the neural state evolves. This is because the coefficients of

Pi capture broad network-level correlations, e.g.
Pij

Pik
can be

viewed as a typical ratio of how neuron j and k fire together

along dimension i. Intuitively, when 25% of the channels are

lost, knowing how the remaining 75% of the channels fire

reveal, through P , how the remaining 25% of channels may

have fired, a process we call “PC completion.” A hypothetical

example of PC completion is illustrated in Fig. 1a-c for the

case of N = 2 and D = 1. In our case, with N = 192 and

D = 20, there are (N − 1) × D coefficients which reveal

a network-based relationship between the firing rate of one

channel and the firing rates of the other 191 channels.

It is important to note that the effect of the projection is

reciprocal. That is, while unperturbed channels can mitigate

the error in a channel reporting 0 firing rate, similarly, the

channel reporting a 0 firing rate, through P , will introduce a

small error in the estimation of the firing rate of the unper-

turbed channels, as in Fig. 1c. Hence, for a reasonable PC

completion, a significant proportion of unperturbed channels

should be available, so that there are sufficient observations

of true underlying firing rates to mitigate errors introduced

by the undetected errors in perturbed channels.

3) PC view – the low-dimensional decoder ignores error

along higher-order PC dimensions: The low-dimensional

projection extracts much of the meaningful signal variance

in the top D dimensions, provided D is sufficiently large,

and ignores the neural variance in the remaining N − D
dimensions. Hence, a potential benefit of low-dimensional

decoding is that perturbations which have large projections

to unused PCs do not affect the decoder. We illustrate this

in Fig. 1d-f, where the low-dimensional neural state tends to

move along PC1 (i.e. λ1 ≫ λ2). Then the decoder, which

only considers the top D dimensions (e.g., PC1 in Fig. 1d-

f), does not take into account the neural perturbation along

the remaining N − D dimensions (e.g. ignoring PC2 in

Fig. 1d-f). We note that, in Fig. 1d-f, εL2 and εL1 represent

the decomposition of εH along the PCs. Hence, a portion

of the error perturbation introduced by channel loss εH

is attenuated by virtue of ignoring the projection of the

error onto higher dimensional PCs. Intuitively, we have that

‖PT εH‖2 ≤ ‖ε
H‖2.

C. The NPC-ReFIT-KF mitigates velocity perturbation in-

troduced by channel loss

We must ultimately understand how the channel loss per-

turbation is projected to the decoded velocity. For velocity-

based KFs, such as ReFIT-KF and NPC-ReFIT-KF,MH2 and

ML2 (as in Eqns. (2) and (3) respectively) map observations

(yk and sk) to cursor velocity only. To analyze how channel

loss perturbs velocity, we define εyk = y
0
k − yk, where yk

are the firing rates if there is no channel loss, and y0k are

the firing rates with channel loss. Then, εyk is the firing rate

perturbation (error) introduced by channel loss.
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Fig. 2. Firing rate perturbation comparison For 40 (∼ 20 % of)
channels lost, we project the firing rate errors through both the NPC-ReFIT-
KF and ReFIT-KF to see how they map to velocity errors, ‖εLxk

‖2 and

‖εHxk
‖2, respectively. A histogram of ‖εHxk

‖2 − ‖εLxk
‖2 over time bins

k is shown to indicate that the NPC-ReFIT-KF mitigates error in cursor
speed introduced by channel loss by more than 5 mm/s over the ReFIT-KF
approximately 30% of the time, and by more than 10 mm/s over 10% of
the time. The mean difference, 2.4 mm/s (red dashed line) is significantly
different than 0 by a t-test (p < 0.05).

For the ReFIT-KF decoder, the perturbation to velocity as

a result of channel loss for time bin k is εHxk =M
H
2 εyk . For

the NPC-ReFIT-KF, the same quantity is εLxk =M
L
2 P

TRεyk
(where R a diagonal matrix with Rii =

1
ri+ν

, i.e. the

firing-rate normalization for channel i). For 40 channels lost

(approximately 20 % of channels lost), we show in Fig. 2

the difference in the magnitude of the decoded velocity error

resulting from channel loss between the ReFIT-KF and NPC-

ReFIT-KF decoders. We see that the error in cursor speed

resulting from channel loss is significantly greater under

the ReFIT-KF when compared to the error in cursor speed

resulting from the NPC-ReFIT-KF, i.e.
〈

‖εHxk‖2
〉

>
〈

‖εLxk‖2
〉

where 〈·〉 denotes averaging over time bins k.

IV. RESULTS

A. NPC-ReFIT-KF achieves state-of-the-art performance

while capturing approximately 60 % of the neural variance

Without channel loss, the performance of ReFIT-KF and

NPC-ReFIT-KF is comparable. We noticed no significant dif-

ference in performance when using D = 20 PCs (capturing

approximately 60 % of the variance) as shown in Fig. 3a (for

100% of the neurons). To calibrate the reader, an information

rate of 4 bps on this task corresponds to approximately one

effective correct target selection every ∼ 1.2 s.
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Fig. 3. Performance under channel loss. (a) The bitrate for both the
ReFIT-KF (orange) and the NPC-ReFIT-KF (blue) under channel loss. The
NPC-ReFIT-KF sustains higher bitrates in the face of channel loss. A *
indicates significance by a t-test (p < 0.05). (b) The corresponding per-
block average difference in speed error resulting from channel loss. Though
the speed differences are on average < 1 cm/s, Fig. 2 shows that the ReFIT-
KF speed error is often 1 cm/s greater than that of the NPC-ReFIT-KF during
the trial. When 60 − 85% of the channels are available, a significance in
the difference in mean speed errors corresponds to a significant performance
difference on the bitrate task.

B. The NPC-ReFIT-KF is more robust to undetected channel

loss than the ReFIT-KF

In Fig. 3a we show the bitrate for both the ReFIT-KF and

the NPC-ReFIT-KF under channel loss for a single random-

ized channel loss order with repeated measurements. We see

that for this randomized dropping order, the NPC-ReFIT-KF

is in general more robust channel loss. Correspondingly in

Fig. 3b, the difference between the mean cursor speed error

as a result of channel loss,
〈∥

∥εHxk

∥

∥

2

〉

−
〈∥

∥εLxk

∥

∥

2

〉

for each

session is shown. When 60− 85% of the channels are avail-

able, a significance in the mean cursor speed error between

ReFIT-KF and NPC-ReFIT-KF (Fig. 3b) corresponds to a

significant performance difference (Fig. 3a).

To show that in general, the NPC-ReFIT-KF is more robust

than the ReFIT-KF when random channels are dropped, we

randomized 14 different dropping orders of 40 (∼ 20 %
of) channels and measured a bitrate from 200 trials for

both decoders, as shown in Fig. 4. The NPC-ReFIT-KF de-

coder generally outperforms the ReFIT-KF (mean difference:

0.74 bps, significant at p < 0.05).
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Fig. 4. Performance of ReFIT-KF vs NPC-ReFIT-KF for randomly

losing 40 (∼ 20 % of) channels. Each row indicates a different experi-
mental block of 400 trials, during which the channel number with a black
dot denotes that this channel was lost (i.e. its firing rate was set to zero).
The difference in bitrate performance for each block is indicated by the bar
plot. The NPC-ReFIT-KF achieves significantly higher mean bitrate than
the ReFIT-KF across the aggregate of drop orders.
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Fig. 5. Performance of ReFIT-KF with normalized firing rates vs

NPC-ReFIT-KF for randomly losing 40 (∼ 20 % of) channels. As in
Fig. 4, each row signifies a bitrate measurement for two decoders with 40

channels lost. Averaging across all random dropping orders, NPC-ReFIT-
KF achieves a higher mean bitrate than ReFIT-KF, however, the difference
is not significant.

C. ReFIT-KF with normalized firing rates vs NPC-ReFIT-KF

To further investigate if the robustness is primarily a result

of the normalization or the dimensionality reduction, we

compared the bitrate of a ReFIT-KF whose observations

are zk − µ (see Eqn. 1) with the NPC-ReFIT-KF, whose

observations are sk = P
T (zk−µ). Hence, the two decoders

only differ in that the NPC-ReFIT-KF utilizes dimensionality

reduction through P . We evaluated the bitrate for 29 different

dropping orders of 40 (∼ 20 % of) channels as shown

in Fig. 5. We found that the NPC-ReFIT-KF on average

achieved a higher average bitrate (0.3 bps) which was not

significant (p ≈ 0.09), indicating that dimensionality reduc-

tion at D = 20 did not significantly improve the robustness

of the decoder.

V. CONCLUSION AND FUTURE WORK

We show that a NPC-ReFIT-KF, which utilizes firing

normalization and dimensionality reduction on binned spike
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counts, performs comparably to a ReFIT-KF in a grid selec-

tion task. We further show that such a decoder is in general

more robust to the undetected loss of channels.

A natural question is to further investigate how dimen-

sionality reduction contributes to robustness. For example,

the robustness may be significantly affected by changing the

dimensionality D, since increasing D increases the number

of coefficients for PC-completion. Future work will also be

aimed at more deeply understanding the relative contribution

of normalization and dimensionality reduction to robustness.

Finally, future work should also address how these effects

vary across subjects with differing ensemble neural corre-

lations, vary with task complexity, and vary with differing

types of decoders (for example, nonlinear decoders [15]).
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