
  

 

Abstract—A major challenge facing the development of high 
degree of freedom (DOF) brain machine interface (BMI) 
devices is a limited ability to provide prospective users with 
independent control of many DOFs when using a complex 
prosthesis. It has been previously shown that a large range of 
complex hand postures can be replicated using a relatively low 
number of movement synergies. Thus, a high DOF joint space, 
such as the one the hand resides in, may be decomposed via 
principal component analysis (PCA) into a lower DOF (eigen-
reach) space that contains most of the variance of the original 
movements. By decoding in this eigen-reach space, BMI users 
need only control a few eigen-reach values to be able to make 
movements using all DOFs in the arm and hand. In this paper 
we examine how using PCA before decoding neural activity 
may lead to improvements in decoding performance.  
 

I. INTRODUCTION 

Brain machine interfaces (BMIs) aim to allow users to 
control devices such as a cursor on screen or a prosthetic arm 
and hand via neural signals. Current state-of-the-art devices 
have progressed to allow subjects to accurately control a 
cursor for use in rudimentary point and click applications [1], 
[2], as well as seven degree of freedom (DOF) control over a 
robotic arm and hand for reaching and grasping of objects 
[3], [4].  

For cursor applications, users are now able to control with 
some success all the degrees of freedom necessary for the 
task. However, for applications that involve the control of a 
prosthetic arm or hand that may contain over 20 independent 
actuators, current neural interfaces do not allow control of the 
necessary number of DOFs. 

To overcome this, it has been proposed that 
decomposition of the complete upper limb DOF space to a 
lower DOF space would result in a more manageable 
interface for users of a high-DOF prosthetic [5]. Such 
mappings may take advantage of movement synergies that 
arise in natural reach and grasp movements. While many 
different hand postures are used when grasping to various 
objects, many of the joint angles between the digits of the 
hand do not vary independently. In fact, these movements 
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can be projected into a space in which the first two 
components account for more than 80 % of the variance in 
the grasps [6].  

In this paper we examine the effects on decoding 
performance when joint angles are first decomposed via 
principal component analysis (PCA) into an eigen-reach 
space. We also compare the decoding performance of a 
kernel-based autoregressive moving average (KARMA) 
model, which nonlinearly maps population neural activity to 
dimensions of joint angles against traditional Kalman filter 
decoders. KARMA has been previously shown to outperform 
Kalman filter decoders in three-dimensional cursor tasks [7]. 
In this paper we compare the performance of both decoders 
across joint angles in a reach and grasp task. 

 

II. METHODS 

A. Experimental Procedures 

Four thirty-two electrode microdrives (SC32, Gray Matter 
Research, USA) were implanted in one adult Rhesus 
macaque (Maccaca mulatta). The microdrives were placed 
via an MRI guided stereotax (Brainsight, Rogue Research 
Inc., Ca) over dorsal premotor cortex (PMd) and ventral 
premotor cortex (PMv) of both hemispheres. Each electrode 
was individually controllable and had an initial impedance 
between 0.6 - 1.5 M at 1 kHz. 

All surgical and animal care procedures were approved 
by the New York University Animal Care and Use 
Committee and were performed in accordance with the 
National Institute of Health guidelines for care and use of 
laboratory animals. 
 

B. Behavioral Task 

The subject was trained to perform a reach and grasp task 
to objects of various sizes and shapes for liquid reward. 
Objects were variably presented to the subject in a workspace 
that was approximately 50 cm x 50 cm x 50cm (Fig. 1a). 
While performing the task, the position of each bone segment 
from the subjects shoulder to hand was tracked through 
localization of reflective markers placed on the subject’s skin 
via infrared and near-infrared cameras (Osprey Digital 
RealTime System, Motion Analysis Corp., USA; for more 
information please see [8], [9]; Fig. 1b,c). A total of 23 
markers were used (three on each finger, one on the back of 
the hand, three on the wrist, two on the elbow and three on 
the chest; the subject was missing the distal phalange of the 
middle finger). These markers were tracked at 100 frames/sec 
and identified in real-time (Cortex, Motion Analysis Corp.).  
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For offline analysis, 26 joint angles were solved using a 
Rhesus macaque musculoskeletal model [10] (SIMM, 
MusculoGraphics Inc., USA). This model was scaled to fit 
the subject’s right arm and hand via an MRI reconstruction of 
bone segments and aligned to the tracked marker locations 
via x-rays of the subject’s hand and arm while the reflective 
markers were in place.  

 

 
 Figure 1 – Behavioral task setup. A) Various grasping objects with 
reflective markers placed on unique locations to allow tracking. B) 
Reflective markers fixated to the subject’s skin. C) Infrared and near-
infrared cameras surrounding the workspace.  

 

C. Offline decoding 

Joint angles were decoded offline from spiking activity in 
a cross-validated manner. Spike waveforms were extracted 
by first band-pass filtering the raw neural waveforms from 
0.3 – 6.6 kHz, and then finding threshold crossings 3.5 
standard deviations below the mean filtered signal. 
Threshold-crossing events were not further clustered to 
identify and extract single units. Once spike times were 
identified, joint angles were decoded using three different 
methods: a Kalman filter [11], [12], a kernel-based 
autoregressive moving average (for more information the 
reader is directed to [7], [9], [13] , and a PCA transformation 
before performing the KARMA decoding (PCA-KARMA).  
KARMA parameters were fit using a grid search technique. 
The PCA analysis inputs were vectors of joint angles in time, 
which had the circular mean subtracted and were then arctan 
transformed. Joint angles were decomposed into 24 
components.  

To compare performance of each decoding algorithm, the 
correlation coefficient between the actual and decoded values 
were calculated for each joint angle. All decoded sessions 
were cross-validated by dividing each session in half, and 
then training on one section and decoding on the other. 

 

III. RESULTS 

One subject performed in 42 behavioral sessions. We first 
present an example session of decoding performance and 
then show differences across sessions for each of the 
decoding algorithms. 

A. Offline decoding 

Joint angles were decoded and reconstructed from neural 
data after the completion of each session. Reconstructed joint 
angles from the index finger and wrist using the PCA-
KARMA method for a single session are shown in Figure 2. 
The decoded joint angles followed the actual joint angle 
closely. To quantify this, Figure 3 presents the correlation 
coefficients for all 26 joint angles measured in the behavioral 
session. The overall average cross-validated correlation 
coefficient was 0.54  0.23 (mean ± std).  

As the electrodes were moved individually between 
behavioral sessions the decoding performance of each joint 
angle varied with electrode position. We also found that as 
we decoded large segments of time (that did not sub-select 
for behavioral events), the decoding performance also varied 
significantly with time (Figure 4).  

 

 
Figure 2 – Actual (black) and decoded (red) joint angle data for the 
proximal joint in the index finger and the wrist.  

 
 

 
Figure 3 – Decoding performance for a single session multiple joint angles. 
1- shoulder elevation; 2 – shoulder angle; 3 – shoulder rotation; 4 – elbow 
flexion; 5 wrist pro/supination; 6 – wrist flexion; 7 – wrist deviation; 8, 12, 
16, 19, 23 – finger proximal flexion; 9, 13, 17, 20, 24 – proximal abduction; 
10, 14, 18, 21, 25 – mid flexion; 11, 15, 19, 26 – distal flexion.  
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Figure 4 – Joint angle correlation coefficients calculated over a 30 second 
sliding window from KARMA decoding for a segment in time. 

 

B. KARMA vs. Kalman filter decoding 

Similar to the 3D cursor results presented by Shpigelman 
et al. [7], KARMA outperformed the Kalman filter decoder 
for the majority of the decoded sessions. Figure 5 presents 
the correlation coefficients over a sliding window for seven 
of the proximal joint angles for both decoding algorithms 
across multiple sessions. 

 

 
 
Figure 5 – Correlation coefficients of actual and decoded joint angles for 
KARMA decoding and Kalman filter decoding. 

 

C. Decoding synergistic movements 

When joint angles are first decomposed into their 
principal components and then decoded via KARMA, 
decoding performance as characterized by the correlation 
coefficients improved or stayed the same for each session 
(Fig. 6). Across all sessions, the average correlation 
coefficient increased by 0.09 ± 0.2 (mean ± std). 

When the correlation coefficients for the eigen-reaches 
(components of the PCA decomposition) are analyzed for an 
example session, only three of the components have 
correlation coefficients greater than 0.4, with seven of the 
coefficients greater than 0.2. Figure 7 presents these 
correlation coefficients calculated over a sliding window of 
30 s while Figure 8 shows the singular values associate with 
the principal components. Most variance is captured by the 
lower components which are decoded with higher precision. 

 

 
Figure 6 – Histogram of the differences in average correlation coefficients 
per behavioral session when PCA is performed on the joint angles before 
KARMA decoding.  
 

 

 
Figure 7 – Correlation coefficients calculated over a 30 second sliding 
window of the decoded joint angles in the PCA space. 

 

 
Figure 8 – Singular values for all PCA components from an example 
session. As expected the lower components capture the majority of the 
variance of the original joint data. 

 

IV. DISCUSSION 

Our results show that KARMA outperforms the Kalman 
filter decoder, suggesting a nonlinear mapping of neural 
activity to the joint angles. By using these nonlinear 
techniques significant improvements may be made in joint 
decoding. However, this may be at the cost of increased 
decoding time. For a three-DOF task, this has been shown not 
to be an issue for real-time control [7]. 
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In the second section of the paper, performing PCA was 
shown to provide two benefits to decoding. The first is that 
for offline decoding, the performance increased significantly 
for each session tested. The second benefit is that it allows a 
transformation from a low-DOF controllable input signal to a 
high-DOF motor/robotic output. This has implications for 
online decoding and control. 

For offline decoding, performing the PCA decomposition 
may result in improved decoding performance due to the 
synergistic relationship in the joint angles of reaches and 
grasps. As 3-4 eigen-reach components capture the most 
variance in the movements, PCA may also increase the 
decoding power of the neural activity by denoising the data. 
Highly random or noisy movements will be captured by 
higher order components, which are not decoded well. This 
may result in improved decoding of the lower order 
components which contain the majority of the meaningful 
joint information. 

For online decoding, utilizing the synergies in movements 
will allow users substantial control over a high-DOF 
prosthetic without the need to provide high-DOF readouts 
from neural interfaces. While this is highly desirable, a 
method to train a user on how to individually control and add 
multiple eigen-reaches to perform daily tasks will be 
required. 

V. CONCLUSION 

In this paper we have show that KARMA can outperform 
a Kalman filter decoder for joint angles in a reach and grasp 
task. Performing PCA on the joint angles before using 
KARMA was also shown to increase performance. Finally, 
the relatively low-DOF control needed in the decomposed 
space may provide an easier route towards controlling high-
DOF prosthetics. 
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