
  

 

Abstract—Recent progress in brain-machine interfaces 

(BMIs) has shown tremendous improvements in task 

complexity and degree of control. In particular, closed-loop 

decoder adaptation (CLDA) has emerged as an effective 

paradigm for both improving and maintaining the performance 

of BMI systems. Here, we demonstrate the first reported use of 

a CLDA algorithm to rapidly achieve high-performance control 

of a BMI based on local field potentials (LFPs). We trained a 

non-human primate to control a 2-D computer cursor by 

modulating LFP activity to perform a center-out reaching task, 

while applying CLDA to adaptively update the decoder. We 

show that the subject is quickly able to readily reach and hold 

at all 8 targets with an average success rate of 74% ± 7% 

(sustained peak rate of 85%), with rapid convergence in the 

decoder parameters. Moreover, the subject is able to maintain 

high performance across 4 days with minimal adaptations to 

the decoder. Our results indicate that CLDA can be used to 

facilitate LFP-based BMI systems, allowing for both rapid 

improvement and maintenance of performance. 

 

I. INTRODUCTION 

Brain-machine interfaces (BMIs) have undergone 

dramatic improvements in functionality, from simple 

modulation of individual neurons [1] to control of a robotic 

arm with multiple degrees-of-freedom [2]. Despite these 

impressive results, the difficulty in achieving proficient 

control can limit the clinical viability of BMIs. In addition, 

changes in neural signal quality recorded over time can 

further complicate the user’s ability to maintain proficient 

control. To address these issues, prior work has shown that 

decoder adaptations performed during closed-loop BMI 

operation can facilitate rapid performance improvements 

[3]–[6] as well as maintain proficient control [7]. However, 

these adaptive approaches have yet to be implemented with 
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local field potential (LFP) signals, which measure the sum of 

local synaptic currents flowing across extracellular space. 

For instance, in a recent closed-loop LFP study, Flint et al. 

used a static decoder but did not apply any decoder 

adaptations to aid performance improvement [8]. 

In this study, we used decoder modifications during 

closed-loop control, which we refer to as closed-loop 

decoder adaptation (CLDA), to achieve rapid initial 

performance BMI improvements. We trained a non-human 

primate to perform a center-out reaching task with a cursor 

controlled via LFP activity. We employed an assistive 

training paradigm [2], [9], [10] that gradually increased the 

difficulty of control, while simultaneously using a CLDA 

algorithm to recalibrate the decoder. This combined 

approach allowed the subject to reach and hold at all 8 

targets with volitional control within 20 minutes. On 

subsequent days, the subject was able to readily perform the 

task at the start of the session without any further assist. 

II. METHODS 

A. Electrophysiology 

One adult male rhesus macaque (macaca mulatta) was 

used in this study. One microwire array of 128 teflon-coated 

tungsten electrodes (35 μm diameter, 500 μm wire spacing, 

8×16 array configuration; Innovative Neurophysiology, 

Durham, NC) was chronically implanted in each brain 

hemisphere, targeting the arm areas of primary motor cortex 

(M1) and dorsal premotor cortex (PMd). All procedures 

were conducted in compliance with the National Institute of 

Health Guide for Care and Use of Laboratory Animals and 

were approved by the University of California, Berkeley 

Institutional Animal Care and Use Committee. 

B. Behavioral Task 

The subject was head-restrained in a primate chair and 

performed a self-paced 2-D center-out reaching task to 8 

circular targets (1.7 cm radius) uniformly spaced about a 13 

cm diameter circle. Initially, the subject was trained to 

perform the task using a Kinarm (BKIN Technologies) 

exoskeleton with the right arm. During subsequent BMI 

operation, the subject’s arms were confined within the 

primate chair as he performed the task under neural control. 

Reach targets were presented in a block structure of 8 

targets with pseudo-randomized order within each block. 

Fig.  1 shows an illustration of the task setup. Trials were 

initiated by moving the cursor to the center target and 

holding for 400 ms. The subject had an unlimited amount of 

Brain-machine interface control using broadband spectral power 

from local field potentials  

Siddharth Dangi*, Student Member, IEEE, Kelvin So*, Student Member, IEEE,  

Amy L. Orsborn, Student Member, IEEE, Michael C. Gastpar, Member, IEEE,  

and Jose M. Carmena, Senior Member, IEEE 

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 285



  

time to enter the center target to initiate a trial. Upon 

entering the center, the reach target appeared. After the 

center-hold period ended, the subject was cued to initiate the 

reach via target flash, after which he was required to move 

the cursor to the peripheral target and hold for 300 ms to 

receive a liquid reward. Failure to hold at the center or 

target, or reach the target within the time limit, restarted the 

trial without reward.  

C. Feature Extraction and Decoding Algorithm 

LFP signals were recorded and sampled at 1 kHz using a 

128-channel MAP recording system (Plexon Inc., Dallas, 

TX). The multi-taper method [11] was used to extract 

estimates of the power in consecutive 10 Hz bands from 40–

150 Hz in 20 randomly chosen channels from the right 

hemisphere. Spectral estimation was performed every 100 

ms using a sliding window of 200 ms of raw LFP activity. 

The logarithms of these spectral power estimates, across 

multiple frequency bands and LFP channels, were passed as 

neural features into a Kalman filter (KF) decoding algorithm 

in order to implement closed-loop BMI control. The KF 

assumes the following state transition and state evolution 

models: 

 

             (1) 

            (2) 

 

where           and           are Gaussian noise 

terms, and    and    are vectors representing the kinematic 

state of the cursor and the features being passed into the 

decoder (respectively) at time-step  . The transition matrix   

models how the cursor kinematics evolve from one time-step 

to the next, while the observation matrix   relates cursor 

kinematics to neural features. The state vector    was 

defined to include the position and velocity of the cursor 

along both the horizontal and vertical directions of the 

screen. We refer the reader to [12] for the actual KF 

equations that estimate    from    at each time-step. 

D. Closed-loop Decoder Adaptation (CLDA) 

We initialized the decoder (“seed” decoder) using data 

collected as the subject performed natural reaches with his 

arm in the exoskeleton.  We then used the SmoothBatch 

CLDA algorithm [5] to update the decoder while the subject 

performed BMI control. The SmoothBatch algorithm 

periodically computes new values of the KF observation 

model matrices (  and  ) using collected neural activity and 

an estimate of the subject’s intended cursor kinematics. To 

estimate intended kinematics, we employed the method 
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Fig.  1. BMI experiment setup. The log spectral power in consecutive 10 Hz 

bands from 40-150 Hz is estimated from each raw LFP channel. These 
neural features are translated into cursor control via a Kalman filter. The 

filter parameters are periodically updated using the SmoothBatch CLDA 

algorithm. 

Fig. 2. Cursor trajectories to each target on day 1 (A) and day 4 (B). (C) Distribution of reach times for day 1 and day 4. (D) Percent of successful 
trials over time, for each day. Red line marks the assist factor. 
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developed by Gilja et al. [6], which assumes that the 

subject’s intent is to always reach straight towards the 

current target at each time step. 

In order to prevent abrupt changes in decoder parameters, 

SmoothBatch combines new parameter estimates with 

current parameter values using a weighted sum: 

 

                    ̂ (3) 

 

where   denotes the  th
 decoder update,  ̂ represents a new 

estimate of   from recent data, and         determines the 

speed of decoder adaptation (the update rule for   is 

analogous).   was initially set such that the update “half-

life” (the time after which the influence of a new estimate  ̂ 

is reduced to half) was approximately 2-3 min. The half-life 

was gradually increased to 15 min as the subject became 

more proficient and further decoder changes were 

unnecessary. 

E. Training paradigm and decoder fitting 

In conjunction with CLDA, we employed an assistive 

training paradigm previously used in [10]. After the initial 

decoder seeding, the subject underwent a secondary training 

phase during which the cursor control was partially directed 

towards the target. Specifically, the cursor trajectory was 

computed using: 

 

     ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑            ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑              ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ (4) 

 

where         is the time-varying “assist factor”,     ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   is 

the output trajectory shown on the screen,        ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   is a vector 

with a speed of 0.8 cm/sec that points to the current target, 

and      ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ is the decoded output of the Kalman filter. We 

initially set       , which was then manually reduced 

based on the subject’s performance. At    , the cursor 

was entirely controlled by the subject. 

F. Performance evaluation 

Overall BMI performance was assessed by calculating the 

subject’s success percentage (the percentage of initiated 

trials that resulted in a reward) over time. In addition, the 

accuracy of cursor trajectories was evaluated using the 

following metrics: 

1) Reach Time (RT): The time elapsed between leaving 

the center and entering the target. 

2) Normalized Path Length (NPL): The distance traveled 

between leaving the center and entering the target, 

divided by the straight-line distance. 

3) Movement Error (ME): The average deviation 

perpendicular to the reach direction [6]. 

 Movement Variability (MV): The standard deviation 

of movement errors perpendicular to the reach 

direction [6].

III. RESULTS 

A. Behavioral performance 

The subject performed the task under neural control for 

four consecutive days. Typical unassisted cursor trajectories 

during day 1 and day 4 are shown in Fig. 2A,B. 

Qualitatively, cursor trajectories appear to become straighter 

over time. The distribution of reach times for the first and 

last day are shown in Fig. 2C. The distribution on day 4 has 

a higher concentration of low reach times than on day 1, 

indicating more consistent and faster reaching trajectories. 

The trial success percentage over time, based on a 5-min 

moving window, is shown in Fig. 2D. The average success 

rate across all days is 74% ± 7%. The high initial 

performance was a result of the assistive training procedure. 

Assistive training was only used during the first 20 minutes 

of day 1 (see red line in Fig. 2D). After assistive training, the 

subject maintained proficient control of cursor. On days 2–4, 

the subject was able to immediately operate the BMI without 

assist. Moreover, the subject maintained a high level of 

performance across days. 

We used four additional methods (Section II-E) to 

quantify the quality of the cursor trajectories. Although the 

Fig. 3. (A-C) Velocity tuning for each channel/frequency pair initially (A), after day 1 (B), and on day 4 (C). Each line is colored based on frequency, 

with blue being lowest (40-50 Hz), and red representing the highest frequency band (140-150 Hz).  The evolution of the preferred directions over time 

is shown in (D). 
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day-to-day changes were small, all four metrics steadily 

decreased over time (ME: -0.14 cm/day,   = -0.03,   = 0.07; 

MV: -0.25 cm/day,   = -0.08,   < 1e-3; NPL: -0.13 

units/day,   = -0.11,   < 1e-9; RT: -96 ms/day,   = -0.10,   

< 1e-6). Overall, these metrics show that the subject 

demonstrated improved ability to control the cursor over the 

course of the experiment. 

B. Changes in decoder parameters 

We examined the evolution of the velocity tuning of each 

channel/frequency feature, from the initial seed to the final 

decoder, by tracking the changes in the terms in   that 

correspond to velocity. The   and   velocity terms, plotted 

as a vector, at various points in time are shown in Fig. 3. 

Each vector represents the direction of cursor velocity that 

elicits an increase in power of the corresponding 

channel/frequency feature. The angle of the vector is 

referred to as the preferred direction (mathematically defined 

as         (    ⁄ ), where    and    are the velocity 

coefficients of that feature in the   matrix). The preferred 

directions for each channel/frequency feature as a function 

of time are shown in Fig. 3D. The tuning parameters 

changed drastically during the initial assistive training, but 

mostly converged to stable values as the subject obtained 

full control of the cursor. 

IV. DISCUSSION 

In summary, we implemented a closed-loop decoder 

adaptation algorithm that rapidly enabled proficient control 

of a LFP-based BMI system. CLDA has been previously 

used in spike-based BMI to rapidly improve from low initial 

performance [3]–[5] and also to maintain long-term 

performance [7]. Gilja et al. used a decoder adaptation 

method (ReFIT-KF algorithm) to demonstrate accurate 2-D 

control in primates that approached the performance of 

natural arm control [6]. For field potential activity, Ashmore 

et al. recently applied CLDA on an electrocorticography 

(ECoG) based BMI in which accurate control was obtained 

after 4-5 days, and maintained over 28 days [10]. Here, we 

show that CLDA can also be applied to LFP activity to 

rapidly improve closed-loop BMI performance. 

In this study, we continued the decoder adaptation 

throughout the entire experiment to track any changes to the 

LFP activity. Our results show that the decoder parameters 

converged rapidly in the first day and remained largely 

stable across days. This indicates that the decoder will likely 

continue to work without further adaptation or recalibration 

after the first day. This is important from a clinical 

perspective since this alleviates the need for the subject to 

perform a structured task each day in order to recalibrate the 

decoder. 

Comparing the initial seed and final decoder parameters, 

we found significant differences between the two decoders, 

even though the initial seed was fitted from data collected 

while the subject performed the same center-out task (albeit 

with natural arm movements). This suggests that the 

subject’s BMI control strategy may be fundamentally 

different than his strategy for natural arm control, especially 

since during BMI the subject’s arm was constrained such 

that the same reaching motions were not possible. Given this 

observation, it may be possible that high performance can be 

achieved irrespective of the initial seed. In fact, Orsborn et 

al. used the SmoothBatch CLDA algorithm to successfully 

boost performance from a variety of “non-biomimetic” 

initial seeds [5]. This is another important aspect for clinical 

viability, as natural arm movement data may not be available 

for patients with severe disabilities. Therefore, in future 

work, we will test whether CLDA can be used to improve 

the closed-loop performance of LFP-based BMIs when 

starting from non-biomimetic decoder initializations.  
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