
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract—We performed a comparative analysis of reduced 

arterial models.  These models are characterized by a few 

parameters that can be uniquely estimated from the limited 

measurements often available in practice.  Hence, they offer a 

means to improve hemodynamic monitoring.  We specifically 

describe Windkessel, transmission-line, and recursive 

difference equation models, show how they are related, 

pinpoint their capabilities and limitations, and review how we 

have applied them for less invasive cardiac output monitoring. 

I. INTRODUCTION 

Mathematical modeling of arterial hemodynamics has been 
longstanding.  Arterial models ranging from extremely 
simple to highly complex have been developed.  The simple 
or reduced models help us understand the most crucial facets 
of the physiology.  Further, these models are characterized by 
only a few parameters that can be reliably estimated from the 
limited measurements typically available in practice.  Hence, 
the reduced models afford a practical framework for 
personalized hemodynamic monitoring.  Several types of 
reduced arterial models have proven useful in this regard 
including Windkessel, transmission-line, and recursive 
difference equation models.  In this paper, we describe these 
models, show how they are related, pinpoint their capabilities 
and limitations in representing the arterial tree, and give 
examples of how we have applied them in an attempt to 
achieve less invasive cardiac output (CO) monitoring. 

II. REDUCED ARTERIAL MODELS 

A. Windkessel Models 

Windkessel models fall under the category of lumped-
parameter models (i.e., models characterized by a finite set of 
elements).  The most popular Windkessel model accounts for 
the total arterial compliance (C) of the large arteries and the 
total peripheral resistance (R) of the small arteries (Fig. 1a).  
Thus, this model regards the arterial tree as a single reservoir 
and predicts exponential diastolic blood pressure (BP) decays 

with a time constant equal to  = RC (Fig. 1b).  The model 
transfer function relating CO (i.e., aortic flow rate, q(t)) to BP 
(p(t)) (i.e., arterial impedance) in the Laplace-domain is:   
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Windkessel models with more than two elements have also 

been proposed to improve predictive capacity.  For example, 
the three-element Windkessel model (Fig. 1c) provides some 
improvement in representing the transfer function over the 
higher frequency regime.  

B. Transmission-Line Models 

Transmission-line models are within the category of 
distributed models (i.e., models characterized by an infinite 
set of elements).  Hence, these models regard the arterial tree 
as spatially dispersed, infinitesimal reservoirs of different BP 
levels due to finite pulse wave velocity. 

A popular transmission-line model is a parallel connection 
of m ideal, lossless transmission-lines terminated by three-
parameter Windkessels (Fig. 2a).  One of multiple 
interpretations of the lines and loads [1] is as follows.  Each 
line represents the wave travel path between the central aorta 
and a peripheral artery.  A line of length (xi) accounts for the 
inertance (L0i) and compliance (C0i) of the large arteries.  So, 
it has constant characteristic impedance (Zci=√(L0i/C0i)) and 
allows waves to travel with constant pulse transit time 
(Tdi=√(L0iC0i)).  Each terminal load represents the arterial bed 
distal to the peripheral artery.  A load accounts for the 
resistance (Ri, Zci) and compliance (Ci) of the small arteries.  

Hence, it has frequency-dependent impedance (Zi()) while 
matching the line impedance at infinite frequency. 

Waves traveling on each transmission-line in the forward 
direction are reflected at the terminal load (i.e., the site of 
impedance mismatch) in the backward direction according to 

the reflection coefficient (i()=(Zi()-Zci)/(Zi()+Zci)).  The 
BP and blood flow rate (BF) at any point on a line thus arises 
by adding or subtracting the waves after time shifting to 
account for the pulse transit time.  In this way, the model 
predicts the progressive distortion that BP and BF waveforms 
undergo with increasing distance from the heart (Fig. 2b). 
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Fig. 1. (a), (c) Windkessel models of the arterial tree.  (b) These models 
predict exponential diastolic blood pressure (BP) decays. 
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The model transfer functions relating central BP (pc(t)) to 

peripheral BP (ppi(t)) and pc(t) to CO (qc(t)) (i.e., inverse of 
arterial impedance) in the Laplace-domain are: 
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    While this model may not appear to be reduced, these 
transfer functions reveal its simplicity.  That is, the first 
transfer function is characterized by only three parameters 
(i.e., RiCi, ZciCi, and Tdi), while the second transfer function 
is represented with eight parameters for the popular “T-tube” 
configuration in which m = 2. 

C. Recursive Difference Equation Models 

Recursive difference equation models lie under the 
category of black-box models (i.e., models characterized by 
parameters without any physical meaning).  Black-box 
models thus assume little about the arterial tree. 

Recursive difference equation models regard the present 
value of the output of a system to be determined by values of 
the input and past values of the output.  The most popular 
model is linear with constant parameters as follow: 
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Here, n is discrete-time, x[n] and y[n] are the input and 
output of a system, {ak, bk} are sets of parameters that define 
the system transfer function (as shown in Eq. (5)), and p and 
q determine the number of these parameters (model order).  
The non-physical parameters can only be ascertained by 
fitting a measured input to a measured output.  The number 
of parameters that can be estimated is restricted by the 
number of frequency components in the measurements.  
Since these components are limited in practice, this model 
can only be characterized by relatively few parameters.  The 
model thus predicts the system output by design.   

Due to its black-box nature, this model is general and 
could conceivably represent any sub-system of the arterial 
network.  For example, the system could represent the arterial 
impedance whose input and output are CO and BP.   

The model transfer function relating the input to output in 
the Z-domain is: 
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Hence, the only assumption of the model transfer function is 
that it takes on pole-zero form in the Z-domain.   

III. MODEL RELATIONSHIPS 

The reduced arterial models may appear distinct, but they 
are related to each other.  We show these relationships below. 

To relate the transmission-line model (Fig. 2a) to the 

Windkessel model (Fig. 1a), we let the frequency  in the 
former model decrease towards zero.  Since large artery 
characteristic impedance (Zci=√(L0i/C0i)) is usually in the 
range of 0.1 mmHg-sec/ml, the inductors in the line short 
before the line capacitors open.  Further, assuming small 
artery compliance (Ci) is much less than large artery 
compliance (C0i), the load capacitor opens before the line 
capacitors.  So, at low frequencies, each line becomes a 
single capacitor with compliance C0i, while each load 
becomes a single resistor with resistance Zci+Ri.  The parallel 
connection of all m of these RC circuits is another RC circuit 

with resistance R=[  ∑ (
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   ]   and compliance 

C=∑   
 =   

. Thus, the transmission-line model reduces to the 

Windkessel model as the frequency decreases. 
To relate the transmission-line model to the recursive 

difference equation model (Eq. (5)), we transform the transfer 
functions of the former model (Eqs. (2) and (3)) to the Z-
domain as follows:  
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Fig. 2. (a) Transmission-line model of the arterial tree.  (b) This model predicts the progressive distortion that BP and blood flow rate (BF) waveforms 
undergo with increasing distance from the heart. 
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where fs is the sampling frequency.  Thus, the Z-domain 
transfer functions of the transmission-line model are of pole-
zero form but with parameters that have physical meaning.  
The recursive difference equation model can thus be viewed 
as a generalization of the transmission-line model.  

Since recursive difference equation models can capture the 
behavior of transmission-line models, the former models with 
input and output of CO and BP may likewise reduce to the 
Windkessel model as the frequency declines.  Also, note that 
the Z-domain transfer function of the Windkessel model (Fig. 
1a) can be easily shown to be of first-order pole-zero form. 

IV. MODEL CAPABILITIES AND LIMITATIONS 

The reduced arterial models have different capabilities and 
limitations in terms of what aspects of arterial hemodynamics 
they can and cannot represent.  We elaborate below. 

Windkessel models account for the reservoir (i.e., volume 
storage) behavior of the arterial tree.  On the other hand, by 
assuming a single reservoir or, equivalently, infinite pulse 
wave velocity, these models cannot mimic the differences in 
BP and BF that occur between various sites in the arterial tree 
(Fig. 2b).  However, as implied above, the Windkessel model 
(Fig. 1a) is a good representation of the arterial tree at low 
frequencies.  At such frequencies, the wavelengths of the 
traveling waves are long (i.e., wavelength equals pulse wave 
velocity divided by frequency) relative to the dimension of 
the arterial tree such that BP and BF at its various sites 
converge to the same levels (i.e., it becomes one reservoir).   

Windkessel models are also a good representation of the 
central BP waveform as evidenced by the exponential 
diastolic decays often apparent in this waveform (Figs. 1b 
and 2b).  Noordergraaf provides the following explanation 
[2].  Forward and backward waves in the aorta have large 
phasic differences due to the long and varying distances 
between the aorta and the main reflection sites at the arterial 
terminations.  So, waves with short wavelengths tend to 
cancel each other out.  But, waves with longer wavelengths 
constructively add.  The key point again is that the arterial 
tree acts more like a single reservoir with increasing 
wavelengths.  We add to this explanation by noting that 
waves with short wavelengths constructively add in the 
periphery due to the close proximity to the arterial 
terminations.  Thus, exponential diastolic decays are 
obscured in peripheral BP waveforms (Fig. 2b). 

In sum, Windkessel models are representative of central 
but not peripheral BP waveforms and low frequency BP 
variations regardless of their site of measurement. 

Transmission-line models assume finite pulse wave 
velocity and thus account for high frequency wave reflection.  
Further, they reduce to the Windkessel model (Fig. 1a) at low 
frequencies.  So, these models are representative of central 
and peripheral BP waveforms.  Thus, by accounting for both 
reservoir and finite pulse wave velocity behaviors, 
transmission-line models may be considered as unifying 
arterial models.   

However, the transmission-line model (Fig. 2a) ignores 
elastic and geometric tapering and multi-level branching.  As 
we discussed in [1], these assumptions can be defended to 
some degree as follows.  As Noordergraaf stated, the arterial 
terminations are often the main reflection sites.  One reason is 
that they offer the largest impedance mismatch, as the radius 
of the arterioles is much smaller than that of the proximal 
arteries.  Another reason is that vessel tapering tends to be 
offset by vessel branching in the forward direction such that 
relative impedance matching is obtained.  On the other hand, 
backward waves are expected to experience strong re-
reflections as they return towards the heart due to necessarily 
significant impedance mismatch in this direction.  Further, 
the multiple reflected waves that return from the periphery 
actually interact in the aorta due to multi-level branching.  

Recursive difference equation models can likewise account 
for reservoir and finite pulse wave velocity behaviors, so 
these models may also be regarded as unifying models.  
Further, the models are not physically based and thus make 
few assumptions about the arterial tree.  Note that at the same 
time, the pole-zero form of the recursive difference equation 
model (Eq. (5)) can be considered to be justified by the 
physical transmission-line model (Fig. 2a).  However, the 
trade-off is that their parameters carry no physical meaning. 

V. LESS INVASIVE CO MONITORING APPLICATIONS   

Due to their simplicity, these arterial models can often be 
identified (i.e., their parameters can be uniquely estimated) 
from the limited information in the waveforms measured in a 
patient monitoring setting (e.g., the ICU).  The parameter 
estimates can provide value above and beyond the measured 
waveforms about a pat ent’s hemodynamic status.  Many 
investigators have employed these models for this purpose.  
For example, we have used them as a basis for estimating 
relative CO change from a peripheral BP waveform in order 
to achieve continuous and minimally or non-invasive 
invasive CO tracking [3, 4].  We review these efforts below. 

High frequency wave reflection profoundly impacts the 
shape of peripheral BP waveforms and thus constitutes a 
serious challenge in CO estimation (Fig. 2b).  We conceived 
two techniques to overcome the confounding wave reflection. 

The idea of the first technique is to bypass the confounding 
wave reflection by exploiting the fact that the Windkessel 
model dominates at low frequencies.  So, for example, 
peripheral BP would eventually decay like a pure exponential 

with  = RC once the faster wave reflection vanishes. 
The technique thus estimates the pure exponential decay 

that would eventually result if the heart suddenly stopped 
beating by analyzing a peripheral BP waveform over many 
beats (Fig. 3a).  First, the BP response to a single heartbeat is 

estimated (h(t) in Fig. 3a).  Then,  is determined from the 
tail end of h(t) once the faster wave reflection dissipates (Fig. 
3a).  Finally, assuming constant C, proportional CO is 

computed as the ratio of mean BP (MAP) and . 
     To estimate the single heartbeat BP response, an impulse 
train (x(t)) is formed in which each impulse is located at the 
foot of the BP waveform (y(t)) and is scaled by the ensuing 
pulse pressure (PP).  Then, the impulse response (h(t), time-
domain version of transfer function) is estimated, which 
when convolved with x(t), optimally fits y(t).  By definition, 
h(t) represents the BP response to a single heartbeat.   
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The impulse response h(t) is identified via the recursive 

difference equation model (Eq. (5)).  The parameter sets {ak, 
bk}, which define h(t), are estimated, for a fixed model-order, 
via the closed-form linear least squares solution [5].  The 
model order is determined by minimizing the minimum 
description length criterion over a set of candidate orders [5].  

Interestingly, this model assumes that the BP waveform 
arises as an impulse train convolved with a pole-zero system.  
This system can be thought of as a cascade connection of 
three transfer functions relating:  (1) the impulse train to the 
CO (i.e., aortic flow rate) waveform (Qc(z)/X(z)); (2) the CO 
waveform to the central BP waveform (Pc(z)/Qc(z)); and (3) 
the central BP waveform to the peripheral BP waveform 
(Ppi(z)/Pc(z)).  The impulse response of transfer function (1) 
is proportional to one beat of the CO waveform.  We have 
empirically found that it can often be represented as a 
second-order pole-zero system.  The transmission-line model 
(Fig. 2a) indicates that that transfer functions (2) and (3) can 
also be represented as pole-zero systems (Eqs. (6) and (7)).  
Thus, the BP model is justified by the physical model.  Note 
that this reasoning parallels the justification of the all-pole 
model of speech via a physical vocal tract model [6]. 

The idea of the second technique is to attenuate the 
confounding wave reflection by capitalizing on the fact that it 
hardly impacts the shape of the central BP waveform.  So, 
first, the central BP waveform is estimated from a peripheral 
BP waveform.  Then, an exponential is fitted to the diastolic 

decay of the estimated waveform to determine  (Fig. 1b).  

Finally, proportional CO is computed as MAP divided by . 
To estimate the central BP waveform, the transmission-

line model (Fig. 2a) is employed.  First, the transfer function 
relating the peripheral BP waveform (ppi(t)) to the central BP 
waveform (pc(t)) is defined in terms of three model 
parameters (inverse of Eq. (7) and Fig. 3b).  These 
parameters are estimated by exploiting the fact that central 
aortic BF is negligible during diastole.  That is, the transfer 
function relating ppi(t) to the component of the CO waveform 
that reaches the peripheral artery measurement site (qci(t)) is 
defined in terms of the same parameters (Fig. 3b).  The 
common parameters are then estimated by finding the BP-to-
BF transfer function, which when applied to ppi(t), optimally 
fits a scaled qci(t) to zero during diastole (Fig. 3b).  Since the 
physical parameters are constrained (e.g., 0 < ZciCi < RiCi), 
this optimization is achieved via a numerical search.  Finally, 
the BP-to-BP transfer function with the parameter estimates 
is applied to ppi(t) to estimate pc(t) (Fig. 3b). 

Experimental testing of both techniques is described 
elsewhere (e.g., [3, 4, 7]). 

VI. CONCLUSION 

In summary, we have described a set of reduced models of 
arterial hemodynamics.  While these models are all related, 
they have distinct capabilities and limitations.  In particular, 
the Windkessel model (Fig. 1a) can represent the central BP 
waveform and low frequency BP variations but cannot 
account for peripheral BP waveforms.  The transmission-line 
model (Fig. 2a) and the recursive difference equation model 
(Eq. (5)) can represent both central and peripheral BP 
waveforms including low frequency BP variations.  
However, the former model neglects some aspects of the 
arterial tree, while the latter model does not carry any 
physical meaning.  We and others have estimated the 
relatively few parameters of all of these models from limited 
waveforms to improve hemodynamic monitoring.  Thus, each 
of these models is useful, and the proper model choice 
depends on the particular hemodynamic monitoring 
application at hand. 
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Fig. 3. Techniques for estimating relative cardiac output (CO) change 
from a peripheral BP waveform based on (a) recursive difference 
equation (Eq. (5)) and Windkessel models and (b) transmission-line and 
Windkessel models.   
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