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Abstract— Actin is one of the most abundant proteins in 

eukaryote cells, playing a key role in cell dynamic 

morphological alterations and tumor metastatic spread. To 

investigate the relationship between the distribution patterns of 

actin and the aggressiveness of cancer cells, we developed an 

image analysis framework for quantifying cell F-actin 

distributions examined with fluorescence microscopy. The 

images are first segmented with multichannel information of 

both F-actin and nuclear staining. Using the watershed method 

and Voronoi tessellation, the cells can be well segmented based 

on both F-actin and nuclear information. Altogether, sixteen F-

actin distribution features are calculated for each individual 

cell. A linear Support Vector Machine (SVM) is then applied in 

the feature space to separate cells with different modes of 

motility. Our results show that cells with different modes of 

motility can be distinguished by F-actin distributions. To our 

knowledge, this is the first study managing to distinguish 

cancer cells with different aggressiveness based on quantitative 

analysis of F-actin distribution patterns. 

I. INTRODUCTION 

Tumor progression is a complex process invoking 
multimodal parameters that enable tumor cells to evade host 
defense mechanisms and to migrate and establish new 
colonies or metastases [1]. Tumor metastasis is the main 
cause of death in cancer patients. It is crucial to understand 
the signaling mechanisms underlying the metastatic cascade 
of cancer and identify new cancer therapy treatments 
targeting invasion and metastasis.  

Actin is one of the most abundant proteins in eukaryotes 
and participates in many important cellular processes. The 
microfilament system of actin plays a key role in cell 
dynamic morphological alterations. The reorganization and 
reassembly of the actin cytoskeleton are involved in almost 
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all steps of metastatic spread. Dynamic actin cytoskeleton 
remodeling and stabilization of de novo substrate contacts 
drive pseudopodial protrusion and the formation of related 
invadopodia, which has long been associated with tumor cell 
migration and invasion [2-4]. Quantification of actin pattern 
changes is important for understanding the differences 
between cell types and for elucidation of cell functional 
changes. The effects and dynamics of drug interactions have 
been actively studied recently. In [5] C. Cui et al. studied the 
change of F-actin organization patterns in confocal 
microscopy images in response to different candidate 
pharmaceutical treatments. Q. Yi and M.G. Coppolino 
proposed an automatic method for quantitative comparison of 
cellular ruffle formation under different experimental 
conditions [6]. Here, we are more interested in distinguishing 
cells with different modes of motility (and thus 
aggressiveness) by quantitative analysis of their F-actin 
distributions. Our hypothesis is that the F-actin distribution 
patterns can effectively differentiate cancer cells based on 
their invasive aggressiveness. 

In this paper, we have developed an image analysis 
framework for quantifying F-actin organization patterns in 
fluorescence microscopy images in response to two cancer 
cell types with different aggressiveness. The resultant 
numerical features are effective to quantitatively profile the 
changes in the spatial distribution of F-actin and facilitate the 
comparison of different cell types. The validation for the 
classification is done through visual inspection. To our 
knowledge, this is the first study managing to distinguish 
cancer cells with different aggressiveness based on 
quantitative analysis of F-actin distribution patterns. Section 
2 describes the experimental conditions for image 
acquisition; Section 3 gives a brief introduction of the 
algorithms applied; Section 4 shows the experimental results; 
discussion and conclusion are presented in Sections 5 and 6, 
respectively. 

II. IMAGE ACQUISITION 

Images of two human mammary epithelial cell lines, viz. 
HMLE-vector and HMLE-snail were acquired. HMLE-Snail 
cells acquired fibroblast-like, mesenchymal appearances and 
became aggressive after over-expressing snail compared with 
HMLE-vector [7]. These two cell lines were fixed by 4% 
paraformaldehyde at room temperature for 15 min, then 
permeabilized by 0.2% Triton-X. After blocking 30 min with 
BSA, actin was stained in phalloidin for 30 min. After 
washing 3 times in phalloidin staining, cells were incubated 
with DAPI for 5 min. Samples were observed under 
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fluorescence microscopy and we randomly picked three 
regions for image acquisition under each condition. 

III. METHODOLOGY 

The acquired 8-bit     size grey images can be 
described by matrix       , viz.                 
                }. Images are acquired in two 
channels: nuclear and F-actin fluorescence. To distinguish 
actin distributions of cells with different modes of mobility, 
the images are first segmented based on the multichannel 
information, following which, quantitative features of actin 
distributions are extracted. The Support Vector Machine 
(SVM) is trained and applied to classify the two cell types in 
the extracted feature space. 

A.  Segmentation 

Both F-actin and nuclear images are initially segmented 
using the Otsu method, which exhaustively searches for the 
threshold minimizing the intra-class variance   

    : 

  
            

            
    ,              (1) 

where    and   
  are the probabilities and variance of the two 

classes, respectively; t is the threshold. The initial segmented 
foreground objects of actin (cell membrane) and nuclear 
images, namely,   

 and   
 are combined into   : 

       foreground     
 (foreground) U   

 (foreground)}. 

After initial segmentation, the cell blobs are detected. 
However, further processing is still needed to find the true 
boundaries of partially segmented cells and to separate cells 
adjacent to each other. Voronoi tessellation and the 
watershed method are applied here. Voronoi tessellation is a 
way of dividing space into a number of regions based on a set 
of seeds. For each seed there is a corresponding region 
consisting of all points closer to it than to any other seeds. If 
   is the image to be processed,    is the k-th seed, i.e. the 
partially segmented cell; i is a pixel in the image, then the 
final segmented cell, viz. the k-thVoronoi region    can be 
defined as: 

                         for all          (2) 

where d is the Euclidean distance. 

  Fig. 1 shows the F-actin and nuclear images for both 
HMLE-vector and HMLE-snail cells. For HMLE-vector cells 
shown in Fig. 1(a), the cells can be well separated because of 
the highlighted cell boundary regions. Only Voronoi 
tessellation is applied for further segmentation with the 
partially segmented cells set as the seeds. For HMLE-snail 
cells, cell boundaries can hardly be detected in F-actin 
images as shown in Fig. 1(b). The nuclei, as shown in Fig. 
1(d), are set as the seeds. The watershed method is applied 
first to separate the attached nucleus. The final segmentation 
results are illustrated in Fig. 1(e) and Fig. 1(f). 
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Figure 1. Segmentation results based on F-actin and nuclei images (a) F-
actin image of HMLE-vector cell; (b) F-actin image of HMLE-snail cell; (c) 

nuclei image of HMLE-vector cell; (d) nuclear image of HMLE-snail cell; 

(e) segmentation result of (a); (f) segmentation results of (b). 

B. Classification 

To distinguish cells with different modes of motility based 

on quantitative actin distribution information, relevant 

features need to be extracted and tested by an optimal 

classifier. Here, altogether 15 measurements are selected: 

namely, the mean, mode, median, and standard deviation of 

F-actin in both cell boundary and nuclei regions; the ratios 

of the aforementioned four values between the above two 

kinds of regions; and the contrast, correlation, and entropy of 

F-actin in each individual cell. Suppose there are N pixels in 

a region R, the intensity value for the i-th pixel in the F-actin 

image is   , then Mean(R) = 
 

 
∑   

 
   , Mode(R) = {    |    is 

the most frequent value in R}, Median(R) = {    |    is the 

middle value in R}, SD(R) = √
 

 
∑               

   . The 

contrast, correlation, and entropy are defined by Eq. (3)-(5) 

respectively: 

Con(R) = ∑                                    (3) 
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Cor(R) = ∑
      (    )      

    
                     (4) 

Ent(R) = ∑                                           (5) 

where       is the      -th entry in the normalized co-

occurrence matrix. 

After the features are obtained, various classifiers can be 

used to distinguish different cell types in the feature space. 

The linear SVM, which is known as the best classifier in the 

sense of minimizing the probabilistic upper bound of the 

error on the test set, is applied here. Given training samples, 

a SVM can be trained to separate categories divided by a gap 

that is as wide as possible. New samples are classified in the 

same feature spaces based on the prediction of the trained 

SVM. 

IV. EVALUATION OF RESULTS 

Three HMLE-vector cell images and three HMLE-snail 
cell images were analyzed. Only cells at the edge of the 
clusters were analyzed, with a total number of 34 HMLE-
vector cells and 41 HMLE-snail cells. For better illustration, 
the 15-D feature space was reduced to the 2-D space using 
principle component analysis (PCA). To train the SVM 
classifier, 50% of the 75 cells were randomly selected as the 
training data, with the remaining 50% cells as the test data. 
Figure 2 illustrates the result of one of the experiments. We 
can see that HMLE-vector and HMLE-snail cells can be 
successfully distinguished by a SVM classifier in a reduced 
2-D feature space. With cross-validation, the experiment was 
repeated 10 times. Each time, 50% of the cells were 
randomly selected as the training data and the remaining 50% 
of cells as the test data. The overall average accuracy rate 
was 94%, with 83% and 100% for the worst and best cases, 
respectively. 

 

Figure 2. Classification of HMLE-snail and HMLE-vector cells in 2-D 
space after PCA. Here 0 and 1 represent the HMLE-vector and HMLE-snail 
cells, respectively. 
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Figure 3. Comparison of the F-actin distributions between HMLE-vector 
and HMLE-snail cells: (a) measurements in cell boundaries, where V1-V4 
are the mean, standard deviation, mode, and median intensity values of 
HMLE-vector cells; S1-S4 are the mean, standard deviation, mode and 
median intensity values of  HMLE-snail cells, respectively; (b) 
measurements in cell nucleus regions; (c) normalized measurements, i.e. 
measurements in boundaries divided by measurements in nucleus; (d) texture 
of two types of cells, where V1-V3 and S1-S3 are the contrast, correlation, 
and entropy of HMLE-vector and HMLE-snail cells, respectively. 

Figure 3 compares the F-actin distributions between 
HMLE-vector and HMLE-snail cells. As we can see from the 
results, the mean, standard deviation, mode, and median 
intensity values of HMLE-vector cells are much lower than 
those of HMLE-snail cells, in both boundary and nuclear 
regions. In contrast, the normalized values (measurements in 
boundaries divided by measurements in nucleus) of HMLE-
vector cells are higher than those of HMLE-snail cells. As for 
the texture features, the contrast and entropy show different 
F-actin distribution patterns in two types of cells, while the 
correlation shows little difference. 

V. DISCUSSION 

Actin is a major component of the cell membrane and 

cytoskeleton, which plays a significant role in cell 

deformation and migration. It is important to understand 

how actin distribution patterns describe different cell 

behaviors. For example, to distinguish cells with different 

migration ability, such as HMLE-snail and HMLE-vector 

cells, normally genotypic data such as western blot are 

needed for the purpose of validation. However, if we can 

identify specific F-actin distribution patterns for different 

cell types, we can distinguish these cells directly from 

microscopic examination. 
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The F-actin distribution patterns can be described in 

various ways. As shown in Figure 3, some of the 

measurements (e.g. median and contrast) are more effective 

than others (e.g. normalized standard deviation and 

correlation) in cell differentiation. It would be interesting to 

study the mechanisms behind these actin distribution 

patterns shown in different cells. We believe that actin 

quantification from microscopic cell images can indeed 

provide some exciting insights on the factors affecting cell 

deformation, migration, and other cellular behaviors and 

functions, and thus help bridge the gap between the 

morphologic changes at the cellular level and the hidden 

mechanisms at the molecular level. 

VI.  CONCLUSION 

The microfilament system of actin plays a key role in cell 

dynamic morphological alterations and is involved in almost 

all steps of metastatic spread. To find the relation between 

actin distribution patterns and aggressiveness of cancer cells, 

we developed an image analysis framework for quantifying 

F-actin in fluorescence microscopy images. The images are 

first segmented with multichannel fluorescence information 

of both F-actin and nuclei. The watershed method and 

Voronoi tessellation are then used for cell segmentation. 

Altogether, 15 features of the F-actin distributions are 

calculated based on the segmentation results. A linear SVM 

is applied in the feature space to separate two types of cancer 

cells in this study. The results show that the F-actin 

distribution patterns are closely related to modes of motility 

of different cells. Classifiers based on the F-actin 

distribution features can effectively distinguish cells with 

different modes of motility. Future work will include more 

detailed study of the relationship between the quantitative 

features of F-actin distribution and the modes of cell 

motility, e.g. identifying and quantifying features of actin at 

different locations such as cortical, puncturate, and stress 

fiber and validating the robustness and effectiveness of the 

extracted features. 
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